Skip to main content
Log in

Effect of Drag Laws and Turbulence Models on CFD Modeling of the Bubble Behavior and Fluid Flow in RH Reactor

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Different drag laws and turbulence models were compared to evaluate gas distribution and fluid flow velocities in a Rheinstahl–Heraeus (RH) reactor. The discrete phase model was adopted to track injected gas bubbles, and the volume of fluid model was applied to describe a more actual free surface. The prediction accuracy of the numerical model was evaluated by the measured flow velocity in an air-water model and the measured circulation flow rate of molten steel in a real RH system. Results indicate that Morsi’s drag law predicts more accurate local velocity compared with Schiller’s and Harmathy’s laws. The influence of turbulent dispersion on the injected gas bubbles is non-negligible for predicting the gas–liquid flow in a RH reactor. In addition, although the large eddy simulation (LES) approach predicts more actual free surface fluctuation, the realizable k-ε model shows better agreement with the measured local velocity in the furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. van Ende, Y.M. Kim, M.K. Cho, J. Choi, and I.H. Jung, Metall. Mater. Trans. B 42, 477. (2011).

    Article  Google Scholar 

  2. C. Liu, H.J. Duan, and L.F. Zhang, Metals 9, 1. (2019).

    Google Scholar 

  3. Q. Cao, and L. Nastac, JOM 70, 2071. (2018).

    Article  Google Scholar 

  4. H. Ling, L. Zhang, and C. Liu, Ironmak. Steelmak. 45, 145. (2018).

    Article  Google Scholar 

  5. F. Jiang, and G.G. Cheng, Ironmak. Steelmak. 39, 386. (2012).

    Article  Google Scholar 

  6. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, and J.C. He, Metall. Mater. Trans. B 46, 1484. (2015).

    Article  Google Scholar 

  7. J.H. Wei, and H.T. Hu, Ironmak. Steelmak. 32, 427. (2005).

    Article  Google Scholar 

  8. B.H. Zhu, Q.C. Liu, M. Kong, J. Yang, D.H. Li, and K. Chattopadhyay, Metall. Mater. Trans. B 48B, 2620. (2017).

    Article  Google Scholar 

  9. L. Schiller, and Z. Naumann, VDI Zeitung 77, 318. (1935).

    Google Scholar 

  10. S.A. Morsi, and A.J. Alexander, J. Fluid Mech. 55, 193. (1972).

    Article  Google Scholar 

  11. T.Z. Harmathy, Aiche. J. 6, 281. (1960).

    Article  Google Scholar 

  12. H. Ling, F. Li, L. Zhang, and A.N. Conejo, Metall. Mater. Trans. B 47B, 1950. (2016).

    Article  Google Scholar 

  13. G. Chen, S. He, Y. Li, Y. Guo, and Q. Wang, JOM 68, 2138. (2016).

    Article  Google Scholar 

  14. R. Chaudhary, C. Ji, B.G. Thomas, and S.P. Vanka, Metall. Mater. Trans. B 42, 987. (2011).

    Article  Google Scholar 

  15. S.L. Yeoh, G. Papadakis, and M. Yianneskis, Chem. Eng. Res. Des. 82, 834. (2004).

    Article  Google Scholar 

  16. L. Li, Z. Liu, M. Cao, and B. Li, JOM 67, 1459. (2015).

    Article  Google Scholar 

  17. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar, ISIJ Int. 41, 1262. (2001).

    Article  Google Scholar 

  18. Q. Yuan, B. Zhao, P. Vanka, and B.G. Thomas, Steel Res. Int. 76, 33. (2005).

    Article  Google Scholar 

  19. L. Li, B. Li, and Z. Liu, ISIJ Int. 57, 1980. (2017).

    Article  Google Scholar 

  20. Q. Cao, and L. Nastac, Metall. Mater. Trans. B 49, 1388. (2018).

    Article  Google Scholar 

  21. L. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361. (2006).

    Article  Google Scholar 

  22. M. Sano, and K. Mori, Trans. ISIJ 20, 675. (1980).

    Article  Google Scholar 

  23. Y. Xu, M. Ersson, and P.G. Jönsson, ISIJ Int. 56, 1982. (2016).

    Article  Google Scholar 

  24. A.D. Gosman, and E. Ioannides, J. Energy 7, 482. (1983).

    Article  Google Scholar 

  25. Q. Cao and L. Nastac, in 2019 STEELSIM Conf. Proc., (Toronto, Canada, 2019), http://digital.library.aist.org/pages/PR-503-045.htm

  26. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An, ISIJ Int. 40, 749. (2000).

    Article  Google Scholar 

  27. Y.G. Park, K.W. Yi, and S.B. Ahn, ISIJ Int. 41, 403. (2001).

    Article  Google Scholar 

  28. G. Chen, S. He, and Y. Li, Metall. Mater. Trans. B 48B, 2176. (2017).

    Article  Google Scholar 

  29. ANSYS Fluent, 17.1, User’s Guide (ANSYS, Inc., Canonsburg, 2017).

    Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Anhui Provincial Natural Science Foundation (2008085QE235, 2008085QE224), Fundamental Research Funds for the Central Universities of China (JZ2020HGTA0074, JZ2020HGTA0047), and China Postdoctoral Science Foundation (2019M662140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Chu, D., Zhang, J. et al. Effect of Drag Laws and Turbulence Models on CFD Modeling of the Bubble Behavior and Fluid Flow in RH Reactor. JOM 73, 2660–2671 (2021). https://doi.org/10.1007/s11837-021-04790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04790-z

Navigation