Skip to main content
Log in

Heterogeneous Microstructure Enhanced Comprehensive Mechanical Properties in Titanium Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The design of materials with good strength and ductility is still a challenge to current materials science. Here, we propose a two-step aging method to balance the comprehensive mechanical properties in near-β titanium alloys by designing multiscale α precipitate distribution. Phase-field calculations in Ti-V binary alloys are used to screen the heat treatment process by changing the microstructure. Our calculations show that the coarse α precipitates nucleate near grain boundaries at 650°C first and grow and nucleate to the grain interior with the increase of aging time. The fine α precipitates nucleate and grow in grain after subsequent aging at 550°C, and the whole system shows four different microstructures in grain by changing the aging time, i.e., homogeneous fine α precipitates, coarse α precipitates surrounded by fine α precipitates, fine α precipitates surrounded by coarse α precipitates, and homogeneous coarse α precipitates. Based on this strategy, we design a hierarchical α precipitate microstructure in Ti55531 alloy by two-step aging at 650°C/60 min plus 550°C/180 min, which shows enhanced mechanical properties with the ultimate tensile strength of 1.38 GPa and total elongation of 6%. Our work sheds light on the design of novel Ti alloys with comprehensive strength and ductility properties by heterogeneous microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Banerjee, and J.C. Williams, Acta Mater. 61, 844 (2013).

    Article  Google Scholar 

  2. A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S.K. Kar, Mater. Sci. Eng. A 568, 61 (2013).

    Article  Google Scholar 

  3. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, Mater. Sci. Eng. A 605, 89 (2014).

    Article  Google Scholar 

  4. R.R. Boyer, and R.D. Briggs, J. Mater. Eng. Perform. 14, 681 (2005).

    Article  Google Scholar 

  5. S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee, Mater. Charact. 81, 37 (2013).

    Article  Google Scholar 

  6. S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Mater. Des. 66, 596 (2015).

    Article  Google Scholar 

  7. P. Manda, R.M. Samudrala, M.K. Mohan, and A.K. Singh, Metall. Mater. Trans. A 48, 4539 (2017).

    Article  Google Scholar 

  8. S. Malinov, W. Sha, and J.J. Mckeown, Comput. Mater. Sci. 21, 375 (2001).

    Article  Google Scholar 

  9. Y. Sun, W. Zeng, Y. Han, Y. Zhao, G. Wang, M.S. Dargusch, and P. Guo, Mater. Sci. Eng. A 528, 8757 (2011).

    Article  Google Scholar 

  10. Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Mater. Des. 32, 1537 (2011).

    Article  Google Scholar 

  11. R.R. Boyer, JOM. 32, 61 (1980).

    Article  Google Scholar 

  12. B. Jiang, S. Emura, and K. Tsuchiya, Mater. Sci. Eng. A 722, 129 (2018).

    Article  Google Scholar 

  13. N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, Acta Mater. 57, 3830 (2009).

    Article  Google Scholar 

  14. J. Huang, Z. Wang, and J. Zhou, Metall. Mater. Trans. A 42, 2868 (2011).

    Article  Google Scholar 

  15. F. Warchomicka, C. Poletti, and M. Stockinger, Mater. Sci. Eng. A 528, 8277 (2011).

    Article  Google Scholar 

  16. C. Huang, Y. Zhao, S. Xin, W. Zhou, Q. Li, and W. Zeng, J. Alloys Compd. 693, 582 (2017).

    Article  Google Scholar 

  17. R.P. Kolli, and A. Devaraj, Metals 8, 66 (2018).

    Article  Google Scholar 

  18. B. Jiang, S. Emura, and K. Tsuchiya, Mater. Sci. Eng. A 731, 239 (2018).

    Article  Google Scholar 

  19. H. Deng, L.Q. Chen, W.B. Qiu, Z. Zheng, Y. Tang, Z.D. Hu, Y.Q. Wei, Z.X. Xia, G.M. Le, J. Tang, and X.D. Cui, J. Alloys Compd. 810, 66 (2019).

    Article  Google Scholar 

  20. R.P. Shi, T.W. Heo, B.C. Wood, and Y.Z. Wang, Acta Mater. 200, 510 (2020).

    Article  Google Scholar 

  21. S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, and H.L. Fraser, Acta Mater. 60, 6247 (2012).

    Article  Google Scholar 

  22. A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, and Y. Wang, Acta Mater. 64, 188 (2014).

    Article  Google Scholar 

  23. T.W. Xu, S.S. Zhang, F.S. Zhang, H.C. Kou, and J.S. Li, Mater. Sci. Eng. A 654, 249 (2016).

    Article  Google Scholar 

  24. L. Ren, W. Xiao, W. Han, C. Ma, and L. Zhou, Mater. Charact. 144, 1 (2018).

    Article  Google Scholar 

  25. Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, and Y.Y. Chen, Mater. Sci. Eng. A 631, 67 (2015).

    Article  Google Scholar 

  26. S.K. Kar, S. Suman, S. Shivaprasad, A. Chaudhuri, and A. Bhattacharjee, Mater. Sci. Eng. A 610, 171 (2014).

    Article  Google Scholar 

  27. C. Li, J. Chen, W. Li, J.J. He, W. Qiu, Y.J. Ren, J.L. Chen, and J.H. Chen, J. Alloys Compd. 627, 222 (2015).

    Article  Google Scholar 

  28. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Science 331, 1587 (2011).

    Article  Google Scholar 

  29. K. Lu, Science 345, 1455 (2014).

    Article  Google Scholar 

  30. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. USA 111, 7197 (2014).

    Article  Google Scholar 

  31. D. Wang, S. Hou, Y. Wang, X.D. Ding, S. Ren, X.B. Ren, and Y.Z. Wang, Acta Mater. 66, 349 (2014).

    Article  Google Scholar 

  32. T. Zhang, D. Wang, J. Zhu, H. Xiao, C.T. Liu, and Y. Wang, Acta Mater. 189, 25 (2020).

    Article  Google Scholar 

  33. T.L. Zhang, D. Wang, and Y.Z. Wang, Acta Mater. 196, 409 (2020).

    Article  Google Scholar 

  34. R. Shi, V. Dixit, H.L. Fraser, and Y. Wang, Acta Mater. 75, 156 (2014).

    Article  Google Scholar 

  35. R. Shi, N. Ma, and Y. Wang, Acta Mater. 60, 4172 (2012).

    Article  Google Scholar 

  36. Y.C. Xu, W.F. Rao, J.W. Morris, and A.G. Khachaturyan, NPJ Comput. Mater. 4, 58 (2018).

    Article  Google Scholar 

  37. Y.C. Xu, C.C. Hu, L.W. Liu, J. Wang, W.F. Rao, J.W. Morris, and A.G. Khachaturyan, Acta Mater. 171, 240 (2019).

    Article  Google Scholar 

  38. B. Appolaire, L. Hericher, and E. Aeby-Gautier, Acta Mater. 53, 3001 (2005).

    Article  Google Scholar 

  39. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, Acta Mater. 57, 2136 (2009).

    Article  Google Scholar 

  40. L.C. Campanelli, P.S.C.P. da Silva, and C. Bolfarini, Mater. Sci. Eng. A 658, 203 (2016).

    Article  Google Scholar 

  41. J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, and J.C. Williams, Metall. Mater. Trans. A 42, 645 (2011).

    Article  Google Scholar 

  42. C.A. Schuh, Mater. Today 9, 32 (2006).

    Article  Google Scholar 

  43. M. Zhang, L. Li, J. Ding, Q. Wu, Y.-D. Wang, J. Almer, F. Guo, and Y. Ren, Acta Mater. 141, 294 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Key Research and Development Program of China (Grant No. 2016YFB0701302), a project supported by State Key Laboratory of Powder Metallurgy of Central South University, the National Natural Science Foundation of China (Grant Nos. 51671156, 51931004, and 51671158), 111 project (BP2018008), and “H2” High-Performance Cluster, the internal funding from City University of Hong Kong under the Programs 7004894 and 9380060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Wang, Y., Li, P. et al. Heterogeneous Microstructure Enhanced Comprehensive Mechanical Properties in Titanium Alloys. JOM 73, 3082–3091 (2021). https://doi.org/10.1007/s11837-021-04775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04775-y

Navigation