• Open Access

Quantitative comparison of electrically induced spin and orbital polarizations in heavy-metal/3d-metal bilayers

Leandro Salemi, Marco Berritta, and Peter M. Oppeneer
Phys. Rev. Materials 5, 074407 – Published 16 July 2021

Abstract

Electrical control of magnetization is of crucial importance for integrated spintronics devices. Spin-orbit torques (SOT) in heavy-metal/ferromagnetic heterostructures have emerged as a promising tool to achieve efficiently current-induced magnetization reversal. However, the microscopic origin of the SOT is being debated, with the spin Hall effect (SHE) due to nonlocal spin currents and the spin Rashba-Edelstein effect (SREE) due to local spin polarization at the interface being the primary candidates. We investigate the electrically induced out-of-equilibrium spin and orbital polarizations in pure Pt films and in Pt/3d-metal (Co, Ni, Cu) bilayer films using ab initio electronic structure methods and linear-response theory. We compute atom-resolved response quantities that allow us to identify the induced spin-polarization contributions that lead to fieldlike (FL) SOTs, mostly associated with the SREE, and dampinglike (DL) SOTs, mostly associated with the SHE, and compare their relative magnitude, dependence on the magnetization direction, as well as their Pt-layer thickness dependence. We find that both the FL and DL components contribute to the resulting SOT at the Pt/Co and Pt/Ni interfaces, with the former contributions being larger at the Pt interface layer and the latter larger in the Co or Ni layers. Our calculations show that the electrically induced transverse orbital polarization is exceedingly larger than the induced spin polarization and present even without spin-orbit coupling, in contrast to the spin polarization.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 26 April 2020
  • Revised 14 June 2021
  • Accepted 29 June 2021

DOI:https://doi.org/10.1103/PhysRevMaterials.5.074407

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Leandro Salemi*, Marco Berritta, and Peter M. Oppeneer

  • Department of Physics and Astronomy, P.O. Box 516, Uppsala University, SE-75 20 Uppsala, Sweden

  • *leandro.salemi@physics.uu.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 7 — July 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×