Skip to main content
Log in

Rational Development of Stable PYY3–36 Peptide Y2 Receptor Agonists

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The anorectic effect of PYY3–36 makes it a potential pharmacological weight loss treatment. Modifications of the endogenous peptide to obtain commercially attractive pharmacological and biophysical stability properties are examined.

Methods

Half-life extended PYY3–36 analogues were prepared and examined regarding Y2-receptor potency as well as biophysical and stability properties.

Results

Deamidation of asparagine in position 18 and 29 was observed upon incubation at 37°C. Asparagine in position 18 – but not position 29 – could be substituted to glutamine without detrimental effects on Y2-receptor potency. Covalent dimers were formed via the phenol impurity benzoquinone reacting with two N-terminal residues (Isoleucine-Lysine). Both residues had to be modified to suppress dimerization, which could be done without negatively affecting Y2-receptor potency or other stability/biophysical properties. Introduction of half-life extending modifications in position 30 and 35 eliminated aggregation at 37°C without negatively affecting other stability properties. Placement of a protracting moiety (fatty acid) in the receptor-binding C-terminal region reduced Y2-receptor potency substantially, whereas only minor effects of protractor position were observed on structural, biophysical or stability properties. Lipidated PYY3–36 analogues formed oligomers of various sizes depending on primary structure and solution conditions.

Conclusions

By rational design, a chemically and physically stable Y2-receptor selective, half-life extended PYY3–36 peptide has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D-LC-MS:

2D liquid chromatography mass spectroscopy

3-Mba:

3-methylbutanoic acid

Ado:

8-amino-3,6-dioxaoctanoic acid

AUC:

Analytical ultracentrifugation

Bis-AgGPSA:

Bis-aminodietoxyacetyl gamma glutamate palmitic sulphonic acid

CD:

Circular dichroism

DLS:

Dynamic light scattering

HMWP:

High molecular weight protein

HPLC:

High performance liquid chromatography

NmeArg:

N-methyl-arginine

Ph Eur:

European Pharmacopoeia

PYY:

Peptide YY

SEC:

Size exclusion chromatography

SLS:

Static light scattering

ThT:

Thioflavin T

UPLC:

Ultra-performance liquid chromatography

USP:

United States Pharmacopoeia

References

  1. Manning S, Batterham RL. The role of gut hormone peptide YY in energy and glucose homeostasis: twelve years on. Annu Rev Physiol. 2014;76(1):585–608.

    Article  CAS  PubMed  Google Scholar 

  2. Neary MT, Batterham RL. Gut hormones: implications for the treatment of obesity. Pharmacol Ther. 2009;124(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  3. Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol. 2010;316(2):120–8.

    Article  CAS  PubMed  Google Scholar 

  4. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature. 2002;418(6898):650–4.

    Article  CAS  PubMed  Google Scholar 

  5. Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia. 2013;56(6):1413–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.

    Article  CAS  PubMed  Google Scholar 

  7. Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM, et al. Peptide YY3-36 and glucagon-like Peptide-17-36 inhibit food intake additively. Endocrinology. 2005;146(12):5120–7.

    Article  CAS  PubMed  Google Scholar 

  8. Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.

    Article  CAS  PubMed  Google Scholar 

  9. Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Therapeutic Advances in Chronic Disease. 2013;5(1):4–14.

    Article  CAS  Google Scholar 

  10. De Silva A, Bloom SR. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut and Liver. 2012;6(1):10–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides. 2018;100:269–74.

    Article  CAS  PubMed  Google Scholar 

  12. Nygaard R, Nielbo S, Schwartz TW, Poulsen FM. The PP-fold solution structure of human polypeptide YY and human PYY3-36 as determined by NMR. Biochemistry. 2006;45(27):8350–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cabrele C, Langer M, Bader R, Wieland HA, Doods HN, Zerbe O, et al. The first selective agonist for the neuropeptide YY5 receptor increases food intake in rats. J Biol Chem. 2000;275(46):36043–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lecklin A, Lundell I, Salmela S, Mannisto PT, Beck-Sickinger AG, Larhammar D. Agonists for neuropeptide Y receptors Y1 and Y5 stimulate different phases of feeding in Guinea pigs. Br J Pharmacol. 2003;139(8):1433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medeiros MD, Turner AJ. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology. 1994;134(5):2088–94.

    Article  CAS  PubMed  Google Scholar 

  16. Ballantyne GH. Peptide YY(1-36) and peptide YY(3-36): part I. distribution, release and actions. Obes Surg. 2006;16(5):651–8.

    Article  PubMed  Google Scholar 

  17. Toräng S, Bojsen-Møller KN, Svane MS, Hartmann B, Rosenkilde MM, Madsbad S, et al. In vivo and in vitro degradation of peptide YY3–36 to inactive peptide YY3–34 in humans. Am J Phys Regul Integr Comp Phys. 2016;310(9):R866–74.

    Google Scholar 

  18. Olsen J, Kofoed J, Østergaard S, Wulff BS, Nielsen FS, Jorgensen R. Metabolism of peptide YY 3–36 in Göttingen mini-pig and rhesus monkey. Peptides. 2016;78:59–67.

    Article  CAS  PubMed  Google Scholar 

  19. Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17(1):134–43.

    Article  CAS  PubMed  Google Scholar 

  20. Østergaard S, Kofoed J, Paulsson JF, Madsen KG, Jorgensen R, Wulff BS. Design of Y2 receptor selective and Proteolytically stable PYY3–36 analogues. J Med Chem. 2018;61(23):10519–30.

    Article  PubMed  CAS  Google Scholar 

  21. Huanbo T, Wencheng S, Wenyu Z, Pengju W, Michael S, Peijian Z. Recent advances in half-life extension strategies for therapeutic peptides and proteins. Curr Pharm Des. 2018;24(41):4932–46.

    Google Scholar 

  22. Bailon P, Won C-Y. PEG-modified biopharmaceuticals. Expert Opinion on Drug Delivery. 2009;6(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  23. Podust VN, Balan S, Sim BC, Coyle MP, Ernst U, Peters RT, et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release. 2016;240:52–66.

    Article  CAS  PubMed  Google Scholar 

  24. Havelund S, Plum A, Ribel U, Jonassen I. Lund a, Markussen J, Kurtzhals P. the mechanism of protraction of insulin Detemir, a long-acting, Acylated analog of human insulin. Pharm Res. 2004;21(8):1498–504.

    Article  CAS  PubMed  Google Scholar 

  25. Lau J, Bloch P, Schaffer L, Pettersson I, Spetzler J, Kofoed J, et al. Discovery of the once-weekly glucagon-like Peptide-1 (GLP-1) analogue Semaglutide. J Med Chem. 2015;58(18):7370–80.

    Article  CAS  PubMed  Google Scholar 

  26. Hutchinson JA, Burholt S, Hamley IW, Lundback A-K, Uddin S, Gomes dos Santos A, Reza M, Seitsonen J, Ruokolainen J. The Effect of Lipidation on the Self-Assembly of the Gut-Derived Peptide Hormone PYY3–36. Bioconjugate Chemistry. 2018;29:12.

  27. Castelletto V, Hamley IW, Seitsonen J, Ruokolainen J, Harris G, Bellmann-Sickert K, Beck-Sickinger AG. Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY3–36. Biomacromolecules. 2018;19:12.

  28. Bellmann-Sickert K, Elling CE, Madsen AN, Little PB, Lundgren K, Gerlach L-O, et al. Long-acting Lipidated analogue of human pancreatic polypeptide is slowly released into circulation. J Med Chem. 2011;54(8):2658–67.

    Article  CAS  PubMed  Google Scholar 

  29. Rangwala SM, D’Aquino K, Zhang Y-M, Bader L, Edwards W, Zheng S, et al. A long-acting PYY3–36 analog mediates robust anorectic efficacy with minimal Emesis in nonhuman primates. Cell Metab. 2019;29(4):837–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    Article  CAS  PubMed  Google Scholar 

  31. Geiger T, Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987;262(2):785–94.

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Zubarev RA. Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides. Electrophoresis. 2010;31(11):1764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol 2014;30(0):211–217.

  34. Lapidus LJ. Understanding protein aggregation from the view of monomer dynamics. Mol BioSyst. 2013;9(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  35. Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    Article  CAS  PubMed  Google Scholar 

  36. Wang W, Singh SK, Li N, Toler MR, King KR, Nema S. Immunogenicity of protein aggregates - concerns and realities. Int J Pharm. 2012;431(1–2):1–11.

    CAS  PubMed  Google Scholar 

  37. Rosenberg A. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuipers BJH, Gruppen H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. J Agric Food Chem. 2007;55(14):5445–51.

    Article  CAS  PubMed  Google Scholar 

  39. Wei Y, Thyparambil AA, Latour RA. Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. Biochim Biophys Acta. 2014;1844(12):2331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schlein M. Insulin formulation characterization—the Thioflavin T assays. AAPS J. 2017;19(2):397–408.

    Article  CAS  PubMed  Google Scholar 

  41. Hjorth CF, Norrman M, Wahlund P-O, Benie AJ, Petersen BO, Jessen CM, et al. Structure, aggregation, and activity of a covalent insulin dimer formed during storage of neutral formulation of human insulin. J Pharm Sci. 2016;105(4):1376–86.

    Article  CAS  PubMed  Google Scholar 

  42. Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10(4):307–77.

    CAS  PubMed  Google Scholar 

  43. Xu B, Fallmar H, Boukharta L, Pruner J, Lundell I, Mohell N, et al. Mutagenesis and computational modeling of human G-protein-coupled receptor Y2 for neuropeptide Y and peptide YY. Biochemistry. 2013;52(45):7987–98.

    Article  CAS  PubMed  Google Scholar 

  44. Xu B, Vasile S, Ostergaard S, Paulsson JF, Pruner J, Aqvist J, et al. Elucidation of the binding mode of the Carboxyterminal region of peptide YY to the human Y2 receptor. Mol Pharmacol. 2018;93(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  45. Kaiser A, Muller P, Zellmann T, Scheidt HA, Meier R, Meiler J, et al. Hydrophobic contacts specifically contribute to peptide binding at the neuropeptide Y2 receptor. Neuropeptides. 2016;55:16.

    Article  Google Scholar 

  46. Kaiser A, Müller P, Zellmann T, Scheidt HA, Thomas L, Bosse M, et al. Unwinding of the C-terminal residues of neuropeptide Y is critical for Y2 receptor binding and activation. Angew Chem Int Ed. 2015;54(25):7446–9.

    Article  CAS  Google Scholar 

  47. Pierpoint WS. O-Quinones formed in plant extracts. Their reactions with amino acids and peptides. Biochem J. 1969;112(5):609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Saggiomo V, Velders A, Stuart M, Kamperman M. Reaction pathways in catechol/primary amine mixtures: a window on crosslinking chemistry. PLoS One. 2016;11:e0166490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Robinson NE, Robinson AB. Molecular clocks. Proc Natl Acad Sci. 2001;98(3):944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bech EM, Kaiser A, Bellmann-Sickert K, Nielsen SSR, Sørensen KK, Elster L, et al. Half-life extending modifications of peptide YY3–36 direct receptor-mediated internalization. Mol Pharm. 2019;16(8):3665–77.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Lomakin A, Kanai S, Alex R, Benedek GB. Transformation of oligomers of Lipidated peptide induced by change in pH. Mol Pharm. 2015;12(2):411–9.

    Article  CAS  PubMed  Google Scholar 

  52. Philo JS, Sydor W, Arakawa T. The glucagon-like peptide 2 analog Teduglutide reversibly associates to form Pentamers. J Pharm Sci. 2020;109(1):775–84.

    Article  CAS  PubMed  Google Scholar 

  53. Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard D, Wahlund PO, Ribel U. Design of the Novel Protraction Mechanism of insulin Degludec, an ultra-long-acting basal insulin. Pharm Res. 2012;29(8):2104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Poulsen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulsen, C., Pedersen, M.Ø., Wahlund, PO. et al. Rational Development of Stable PYY3–36 Peptide Y2 Receptor Agonists. Pharm Res 38, 1369–1385 (2021). https://doi.org/10.1007/s11095-021-03077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03077-x

Key Words

Navigation