Skip to main content
Log in

Thermal Conduction of Elastomeric Polyurethanes with Titanium Dioxide as Mineral Filler and its Composites with Recycled Kevlar Fabric

  • FIBROUS COMPOSITE MATERIALS
  • Published:
Fibre Chemistry Aims and scope

Thermal conduction of composites made from Kevlar® fabric and polyurethane (PU) mineral-filled elastomers was studied. Contact heat conduction was measured according to ISO 12127 standard (which measures the threshold time required for a 10°C increase throughout the sample). PU elastomer filled with TiO2 did not show significant differences in the threshold time for heat conduction as compared to neat PU elastomer although the values tended to be lower. The maximal threshold time was obtained for PU elastomer with TiO2 (125 s for a sample 8 mm wide). No significant differences in the threshold time were observed for other PU elastomers with either TiO2 filler or two added organic fire retardants. Composites made of both Kevlar® fabric/PU and Kevlar®/PU/Kevlar® complied with ISO 15538:2001 standard for firefighter clothing. The aim was to determine if recycled Kevlar® fabric could replace Nomex®, poly(m-phenylene isophthalamide), a costly material of choice in the textile industry for firefighter structural suits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. Joshi, B. Adak, and B. S. Butola, Prog. Mater. Sci., 97, 230-282 (2018).

    Article  CAS  Google Scholar 

  2. R. Schledjewski, D. Schultze, and P. Imbach, J. Coated Fabr., 27, No. 2, 105-114 (1997).

    Article  CAS  Google Scholar 

  3. A. Shaw, “Selection of flame resistant protective clothing,” in: Handbook of Fire Resistant Textiles, F. S. Kilinc (ed.), Woodhead Publishing Ltd., 2013, pp. 351-363.

  4. P. Miskiewicz, I. Frydrych, and W. Pawlak, Int. J. Clothing Sci. Technol., 31, No. 6, 874-886 (2019).

    Article  Google Scholar 

  5. M. C. Lin, C. W. Lou, et al., Polym. Compos., 40, No. S1, E550-E558 (2019).

    CAS  Google Scholar 

  6. W. K. Ho, J. H. Koo and O. A. Ezekoye, J. Nanomater., 2010, Art. ID 583234, 1-11 (2010).

  7. E. Allcorn, M. Natali, and J. Koo, Composites, Part A, 45, 109-118 (2013).

    Article  CAS  Google Scholar 

  8. N. Natali, J. Kenny and L. Torre, Prog. Mater. Sci., 84, 192-275 (2016).

    Article  CAS  Google Scholar 

  9. S. K. Kutty and G. B. Nando, J. Appl. Polym. Sci., 43, No. 10, 1913-1923 (1991).

    Article  CAS  Google Scholar 

  10. R. A. Correa, R. C. R. Nunes, and W. Z. Franco Filho, Polym. Compos., 19, No. 2, 152-155 (1998).

    Article  CAS  Google Scholar 

  11. M. Akbarian, S. Hassanzadeh and M. Moghri, Polym. Adv. Technol., 19, No. 12, 1894-1900 (2008).

    Article  CAS  Google Scholar 

  12. A. Khodadadi, G. Liaghat, et al., Compos. Sci. Technol., 184, 107880 (2019), doi: https://doi.org/10.1016/j.compscitech.2019.107880.

    Article  CAS  Google Scholar 

  13. M. Sarac, D. Buran and M. Koru, J. Nat. Appl. Sci., 22, No. 2, 477-481 (2018).

    Google Scholar 

  14. J. H. Oh, J. H. Bae, et al., Mater. Sci. Forum, 951, 89-93 (2019).

    Article  Google Scholar 

  15. J. W. Wu, W. F. Sung, and H. S. Chu, Int. J. Heat Mass Transfer, 42, No. 12, 2211-2217 (1999).

    Article  CAS  Google Scholar 

  16. S. Benli, F. Yilmazer, et al., J. Appl. Polym. Sci., 68, 1057-1065 (1998).

    Article  CAS  Google Scholar 

  17. D. Torvi, P. Eng. and T. G. Threlfal, Fire Technol., 42, 27-48 (2006).

  18. S. K. Kutty, T. K. Chaki and G. B. Nando, Polym. Degrad. Stab., 38, No. 3, 187-192 (1992).

    Article  CAS  Google Scholar 

  19. A. Pearson and H. Naguib, Composites, Part B, 122, 192-201 (2017).

    Article  CAS  Google Scholar 

  20. N. Burger, A. Laachachi et al., Prog. Polym. Sci., 61, 1-28 (2016).

    Article  CAS  Google Scholar 

  21. Y. Guo, K. Ruan, et al., Compos. Sci. Technol., 193, 108-134 (2020).

    Article  Google Scholar 

  22. M. Mandal and G. Song, Ann. Occup. Hyg., 58, No. 8, 1065-1077 (2014).

    CAS  PubMed  Google Scholar 

  23. S. Bourbigot, F. Samyn et al., Polym. Degrad. Stab., 95, 320-326 (2010).

    Article  CAS  Google Scholar 

  24. X. Chen, W. Wang and C. Jiao, J. Hazard. Mater., 331, 257-264 (2017).

    Article  CAS  Google Scholar 

  25. A. Dike, U. Tayfun and M. Dogan, Fire Mater., 41, No. 7, 890-897 (2017).

    Article  CAS  Google Scholar 

  26. W. El Khatib, B. Youssef, et al., Polym. Int., 52, No. 1, 146-152 (2003).

    Article  Google Scholar 

  27. L. Wan, C. Deng, et al., Polymers, 12, No. 2, 429 (2020).

    Article  CAS  Google Scholar 

  28. S. Mandal, S. Gaan, et al., in: Thermal Analysis of Textiles and Fibers, M. Jaffe and J. D. Menczel (eds.), Elsevier Ltd., 2020, Chap. 21, pp. 355-387.

  29. M. Makinen, “Firefighters’ protective clothing”, in: Advances in Fire Retardant Materials, Woodhead Publishing Series in Textiles, 2008, Chap. 17, pp. 467-491.

  30. DuPont, Too much para-aramid may reduce protection performance of firefighting clothing, DuPont International Operations Sar. Internal DuPont quality assessment project, 2011.

  31. R. Rossi, E. Indelicato and W. Bolli, Int. J. Occup. Saf. Ergon., 10, No. 3, 239-245 (2004).

    Article  Google Scholar 

  32. L. K. Lawson, E. M. Crown, et al., Int. J. Occup. Saf. Ergon., 10, No. 3, 227-238 (2004).

    Article  Google Scholar 

  33. ISO 12127-1:2015, Clothing for protection against heat and flame - Determination of contact heat transmission through protective clothing or constituent materials - Part 1: Contact heat produced by heating cylinder, International Organization for Standardization, 2015.

  34. EN 1486, Protective clothing for firefighters. Test methods and requirements for reflective clothing for specialized firefighting, European Committee for Standardization, Rue de Stassart 36, B-1050 Bruxelles, 2007.

  35. ISO 15538:2001, Protective clothing for firefighters. Laboratory test methods and performance requirements for protective clothing with a reflective outer surface, International Organization for Standardization, 2001.

  36. EN 469, Protective clothing for firefighters. Performance requirements for protective clothing for fire-fighting, European Committee for Standardization, Rue de Stassart 36, B-1050 Bruxelles, 2005.

  37. ISO 9151, Protective clothing against heat and flame” Determination of heat transmission on exposure to flame, International Organization for Standardization, 1995.

  38. J. A. Bocchio, J. C. Quagliano, and P. G. Ross, XIII Argentinian Polymer Congress, National Technological University, Buenos Aires, Argentina, October 9-11, 2019.

  39. M. Boguslawska and L. Baczer, Tekstil ve Konfeksiyon, 24, No. 2, 180-185 (2014).

    Google Scholar 

  40. C. Arvinte, A. V. Sandu, et al., IOP Conf. Series: Mater. Sci. Eng., 572, 012070 (2019).

    Article  CAS  Google Scholar 

  41. O. Atalay, S. Kursun Bahadir, and F. Kalaoglu, Adv. Mater. Sci. Eng., 2015, Art. ID 540394, 1-8 (2015).

  42. P. Miskiewicz, I. Frydrych, et al., Polymers, 11, No. 12, 2087 (2019).

    Article  CAS  Google Scholar 

  43. Y. Su, R. Li, J. Yang, et al., Fibers Polym. 20, 2433-2442 (2019).

    Article  Google Scholar 

  44. K. E. Perepelkin, I. V. Andreeva, et al. Fibre Chem., 35, No. 4, 265-269 (2003).

  45. S. K. Kutty, T. K. Chaki, and G. B. Nando, Prog. Polym. Sci., 38, No. 3, 187-192 (1992).

    CAS  Google Scholar 

  46. C. Vajrasthira, T. Amornsakchai, and S. Bualek-Limcharoen, J. Appl. Polym. Sci., 87, No. 7, 1059-1067 (2002).

    Article  Google Scholar 

  47. M. Akbarian, S. Hassanzadeh, and M. Moghri, Polym. Adv. Technol., 19, No. 12, 1894-1900 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Quagliano Amado.

Additional information

Translated from Khimicheskie Volokna, No. 1, pp. 43-50, January—February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amado, J.Q., Alvarez, H., Moreno, E. et al. Thermal Conduction of Elastomeric Polyurethanes with Titanium Dioxide as Mineral Filler and its Composites with Recycled Kevlar Fabric. Fibre Chem 53, 39–45 (2021). https://doi.org/10.1007/s10692-021-10236-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10236-8

Navigation