Skip to main content

Advertisement

Log in

Effect of Carbon Nanotubes on Microstructure and Fracture Toughness of Nanostructured Oxide Ceramics

  • Published:
Russian Physics Journal Aims and scope

The structure and properties of the yttria-stabilized zirconia ceramics with an addition of high-modulus inclusions of carbon nanotubes are studied. The composite materials are produced by spark plasma sintering. An introduction of carbon nanotubes gives rise to an insignificant decrease in the density and grain size of the ceramics. A larger volume fraction of nanotubes results in an improvement of mechanical properties of the ceramic composites. The highest values of mechanical properties are demonstrated after adding 5 vol.% of carbon nanotubes and are found to be as follows: E = (246 ± 8) GPa, H = (12.7 ± 0.21) GPa, KICI = (12.1 ± 0.35) MPa·m1/2, KICN = (7.8 ± 0.29) MPa·m1/2. Two dissipative mechanisms contribute to the increase in fracture toughness upon introduction of nanotubes: tetragonal-to-monoclinic phase transformation of ZrO2 and crack bridging by the nanotubes. As the amount of introduced inclusions increases, the contribution of martensitic transformation to fracture toughness decreases, which is due to a decrease in the grain size of the tetragonal zirconia phase and, accordingly, its transition to a stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000).

    Article  ADS  Google Scholar 

  2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).

    Article  ADS  Google Scholar 

  3. Hai-dou Wang, Peng-fei He, Guo-zheng Ma, et al., J. Eur. Ceram. Soc., 38, 3660 (2018).

    Article  Google Scholar 

  4. R. Cano-Crespo, B. M. Moshtaghioun, et al., J. Eur. Ceram. Soc., 38, 3994 (2018).

    Article  Google Scholar 

  5. P. F. Becher and M. V. Swain, J. Am. Ceram. Soc., 75, 493 (1992).

    Article  Google Scholar 

  6. L. Ruiz and M. J. Readey, J. Am. Ceram. Soc., 79, 2331 (1996).

    Article  Google Scholar 

  7. B. Basu, Int. Mater. Rev., 50, 239 (2005).

    Article  Google Scholar 

  8. J. Chevalier, L. Gremillard, A. V. Virkar, and D. R. Clarke, J. Am. Ceram. Soc., 92, 1901 (2009).

    Article  Google Scholar 

  9. B. Deng, J. Luo, J. T. Harris, and C. M. Smith, Materialia, 9, 100548 (2020).

    Article  Google Scholar 

  10. M. Trunec and Z. Chlup, Scripta Mater., 61, 56 (2009).

    Article  Google Scholar 

  11. S. A. Saltykov, Stereometric Metallogrpahy [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  12. N. Garmendia, S. Grandjean, et al., J. Eur. Ceram. Soc., 31, 1009 (2011).

    Article  Google Scholar 

  13. J. W. An and D. S. Lim, J. Ceram. Process. Res., 3, No. 3, Part 2, 201 (2002).

  14. M. Mazaheri, D. Mari, R. Schaller, et al., J. Eur. Ceram. Soc., 31, 2691 (2011).

    Article  Google Scholar 

  15. M. Trunec, Ceram.-Silikaty, 52, 165 (2008).

    Google Scholar 

  16. A. Duszov’a et al., J. Eur. Ceram. Soc., 28, 1023 (2008).

    Article  Google Scholar 

  17. L. Melk et al., Ceram. Int., 41, 2453 (2015).

    Article  Google Scholar 

  18. J. Dusza et al., J. Eur. Ceram. Soc., 29, 3177 (2009).

    Article  Google Scholar 

  19. J. Sun, L. Gao, M. Iwasa, et al., Ceram. Int., 31, 1131 (2005).

    Article  Google Scholar 

  20. R. Hassan et al., Mater. Sci. Eng., 704, 329 (2017).

    Article  Google Scholar 

  21. J. Yi, W. Xue, T. Wang, and Z. Xie, Ceram. Int., 41, 9157 (2015).

    Article  Google Scholar 

  22. J. S.S. Babu, C. H. Lee, and C. G. Kang, J. Mater. Res. Technol., 9, 5278 (2020).

    Article  Google Scholar 

  23. J. Zhuang, D. Gu, et al., Powder Technol., 368, 59 (2020).

    Article  Google Scholar 

  24. C. H. Hsueh and A. G. Evans, J. Am. Ceram. Soc., 68, 241 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Mirovoy.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 21–26, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirovoy, Y.A., Burlachenko, A.G., Buyakov, A.S. et al. Effect of Carbon Nanotubes on Microstructure and Fracture Toughness of Nanostructured Oxide Ceramics. Russ Phys J 64, 390–396 (2021). https://doi.org/10.1007/s11182-021-02342-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02342-1

Keywords

Navigation