Skip to main content
Log in

Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, two geometries are studied, the vane and the T-bar, which are best suited for assessing the start-up flow of thixotropic yield stress fluids because they minimize the sample disturbance. Based on step-shear measurements with the vane geometry at different angular velocities and on a wide range of products, mostly commercial toothpastes, we calculate the torque on the T-bar using computational fluid dynamics (CFD). The results are compared to the previously suggested approximate theory by Anderson and Meeten (AMT) and extensive original experiments. It turns out that the agreement between CFD, AMT, and the experimental data depends primarily on the shape of the flow curve which may be quantified by the fluid flow index, N, defined in the shear rate range which represents the flow around the rotating rod of the T-bar. While the CFD and AMT predictions agree well with each other (R2 = 0.98), they both underestimate the experimental data although the experimental-to-predicted ratio also correlates to N (R2 = 0.84) going up from 1 to around 2 as N increases from 0.1 to 0.5. This suggests that when using the T-bar for viscosity measurements, the user needs to take into account the flow index to which end a simple estimate of the effective shear rate is suggested also being a function of N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahuja A, Potanin A (2018) Rheological and sensory properties of toothpastes. Rheol Acta 57:459–471

    Article  CAS  Google Scholar 

  • Ahuja A, Luisi G, Potanin A (2018) Rheological measurements for prediction of pumping and squeezing pressures of toothpaste. J Nonnewton Fluid Mech 258:1–9

    Article  CAS  Google Scholar 

  • Alderman NJ, Meeten GH, Sherwood JD (1991) Vane rheometry of bentonite gels. J Nonnewton Fluid Mech 39:291–310

    Article  CAS  Google Scholar 

  • Anderson VJ, Meeten GH (2012) Interpretation of T-Bar tool measurements for yield stress materials. Appl Rheol 22:55370

    Google Scholar 

  • Baravian C, Lalante A, Parker A (2002) Vane rheometry with a large, finite gap. Appl Rheol 12:81–87

    Article  CAS  Google Scholar 

  • Barnes HA (1997) Thixotropy-a review. J Nonnewton Fluid Mech 70:1–33

    Article  CAS  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry — a review. J Non-Newton Fluid 98(1):1–14

    Article  CAS  Google Scholar 

  • Casson N (1959) A flow equation for pigment oil suspensions of the printing ink type. London: Pergamon Press

    Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. Wiley

    Book  Google Scholar 

  • De Rooij R, Potanin A, Vane den Ende D, Mellema J (1994) Transient shear viscosity of weakly aggregating polystyrene latex dispersions. J Chem Phys 100:5353–5360

    Article  Google Scholar 

  • Dullaert K, Mewis J (2005) Stress jumps on weakly flocculated dispersions: steady state and transient results. J Colloid Interface Sci 287:542–551

    Article  CAS  Google Scholar 

  • Estellé P, Lanos C (2012) High torque vane rheometer for concrete: principle and validation from rheological measurements. Appl Rheol 22(1):12881

    Google Scholar 

  • Estellé P, Lanos C, Perrot A, Amziane S (2008) Processing the vane shear flow data from Couette Analogy. Appl Rheol 18:34037

    Google Scholar 

  • Evans J, Beddow J (1987) Characterization of particle morphology and rheological behavior in solder paste. IEEE Trans Comp Hybrids Manuf Technol 10:224–231

    Article  Google Scholar 

  • Giesekus H, Langer G (1977) Die Bestimmung der wahren Fließkurven nicht-newtonscher Flüssigkeiten und plastischer Stoffe mit der Methode der repräsentativen Viskosität. Rheol Acta 16:1–22

    Article  Google Scholar 

  • Inácio GR, Tomio JC, Vaz M Jr, Zdanski PSB (2019) Numeric study of viscoplastic flow in a T-bifurcation: identification of stagnant regions. Braz J Chem Eng 36:1279–1287

    Article  Google Scholar 

  • Jossic L, Magnin A (2009) Drag of an isolated cylinder and interactions between two cylinders in yield stress fluids. J Nonnewton Fluid Mech 164:9–16

    Article  CAS  Google Scholar 

  • Krulis M, Rohm H (2004) Adaption of a vane tool for the viscosity determination of flavoured yoghurt. Eur Food Technol 218:598–601

    Article  CAS  Google Scholar 

  • Liddell PV, Boger DV (1996) Yield stress measurements with the vane. J Nonnewton Fluid Mech 63:235–261

    Article  CAS  Google Scholar 

  • Mayes BJR (1979) Synthetic Hectorite - a new toothpaste binder. Int J Cosmetic Sci 1:329–340

    Article  CAS  Google Scholar 

  • Merkak O, Jossic L, Magnin A (2006) Spheres and interactions between spheres moving at very low velocities in a yield stress fluid. J Nonnewton Fluid Mech 133:99–108

    Article  CAS  Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

    Article  Google Scholar 

  • Nguyen QD, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27:321–349

    Article  Google Scholar 

  • Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31:385–404

    Article  CAS  Google Scholar 

  • Potanin A (2010) 3D simulations of the flow of thixotropic fluids, in large-gap Couette and vane-cup geometries. J Nonnewton Fluid Mech 165:299–312

    Article  CAS  Google Scholar 

  • Potanin A, Marron G (2021) Rheological characterization of yield-stress fluids with Brookfield viscometer. Applied Rheology 31:1–9

    Article  CAS  Google Scholar 

  • Potanin A, Shapley NC (2021) Heel estimate during pressure-driven drainage of gels from tanks. Chem Eng Sci 230:116158

    Article  CAS  Google Scholar 

  • Rabia A, Djabourov M, Feuillebois F, Lasuye T (2010) Rheology of wet pastes of PVC particles. Appl Rheol 20:11961

    Google Scholar 

  • Rabia A, Yahiaoui S, Djabourov M, Feuillebois F, Lasuye T (2014) Optimization of the vane geometry. Rheol Acta 53:357–371

    Article  CAS  Google Scholar 

  • Roos H, Bolmstedt U, Axelsson A (2006) Evaluation of new methods and measuring systems for characterisation of flow behaviour of complex foods. Appl Rheol 16:19–25

    Article  Google Scholar 

  • Teoman B, Potanin A, Armenante PM (2021) Optimization of optical transparency of personal care products using the refractive index matching method. Colloids Surf A Physicochem Eng Aspects 610:125595

    Article  CAS  Google Scholar 

  • Tokpavi DL, Magnin A, Jay P (2008) Very slow flow of Bingham viscoplastic fluid around a circular cylinder. J Nonnewton Fluid Mech 154:65–76

    Article  CAS  Google Scholar 

  • Wilkinson WL (1960) Non-Newtonian fluids: fluid mechanics, mixing and heat transfer. London: Pergamon Press

    Google Scholar 

  • Wu CS, Kwak YT (1999) Characterization of microgels by Brookfield viscometry with cylindrical, T-bar, and flags impeller spindles. J Appl Polym Sci 71:67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Potanin.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teoman, B., Marron, G. & Potanin, A. Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries. Rheol Acta 60, 531–542 (2021). https://doi.org/10.1007/s00397-021-01282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01282-4

Keywords

Navigation