Skip to main content
Log in

Rapid Synthesis of W–Cr Solid–Solution by Dielectric-Barrier Discharge-Plasma-Assisted Ball Milling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

Supersaturated solid–solutions in a W–Cr alloy system were fabricated by conventional milling and plasma milling. The different extension mechanisms of the solid solubility that were created by ball milling with and without discharge plasma were studied. The solid–solubility of Cr in W for the P-milling W–Cr alloy system was higher, which indicates that plasma milling promotes the formation of W(Cr) solid–solution more easily than conventional milling. According to Miedema’s model, in the W–Cr alloy system, the free-energy change to form a W(Cr) solid solution by plasma milling is reduced compared with conventional milling because of the heating effect of the discharge plasma. Therefore, a higher stored energy in the grain boundaries and dislocations of the W–Cr nanograins during plasma milling makes it easier to overcome the thermodynamic barrier in the formation of a solid–solution, when compared with conventional milling.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 12 November 2021

    The Graphic Abstract has been included

References

  1. Y. Lian, X. Liu, Z. Cheng, J. Wang, J. Song, Y. Yu, J. Chen, J. Nucl. Mater. 455, 371 (2014)

    Article  CAS  Google Scholar 

  2. Y. Lian, F. Feng, J. Wang, X. Liu, J. Song, Y. Wang, Z. Chen, J. Chen, J. Nucl. Mater. 513, 241 (2019)

    Article  CAS  Google Scholar 

  3. S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, S.K. Pabi, Int. J. Refract. Met. H. 36, 191 (2013)

    Article  CAS  Google Scholar 

  4. P. Xiao, Z.K. Fan, Mater. Sci. Forum 569, 125 (2008)

    Article  CAS  Google Scholar 

  5. L. Ratke, S. Diefenbach, Mater. Sci. Eng. R Rep. 15, 263 (1995)

    Article  Google Scholar 

  6. K.S. Kormout, R. Pippan, A. Bachmaier, Adv. Eng. Mater. 19, 1600675 (2017)

    Article  Google Scholar 

  7. M. Park, C.A. Schuh, Nat. Commun. 6, 6858 (2015)

    Article  CAS  Google Scholar 

  8. V.A. Ivchenko, M.A. Uimin, A.Y. Yermakov, A.Y. Korobeinikov, Surf. Sci. 440, 420 (1999)

    Article  CAS  Google Scholar 

  9. E. Ma, J.H. He, P.J. Schilling, Phys. Rev. B 55, 5542 (1997)

    Article  CAS  Google Scholar 

  10. Z. Cao, L. Ouyang, Y. Wu, H. Wang, J. Liu, F. Fang, D. Sun, Q. Zhang, M. Zhu, J. Alloy. Compd. 623, 354 (2015)

    Article  CAS  Google Scholar 

  11. M.Q. Zeng, J.L. Tu, M. Zhu, W. Wang, J.W. Liu, Z.C. Lu, Met. Mater. Int. 26, 1373 (2020)

    Article  CAS  Google Scholar 

  12. J.I. Langford, J. Appl. Crystallogr. 11, 10 (1978)

    Article  CAS  Google Scholar 

  13. Q.L. Zhang, Y.S. Wang, J. Xiao, D.Q. Li, S.T. Yin, Chin. J. Quantum Electron. 26, 177 (2009)

    CAS  Google Scholar 

  14. A. Bachmaier, M. Kerber, D. Setman, R. Pippan, Acta Mater. 60, 860 (2012)

    Article  CAS  Google Scholar 

  15. W. Wang, Z.C. Lu, Z.H. Chen, M.Q. Zeng, H. Wang, M. Zhu, Rare Metals 35, 763 (2016)

    Article  CAS  Google Scholar 

  16. M. Zhu, L.Y. Dai, N.S. Gu, B. Cao, L.Z. Ouyang, J. Alloy. Compd. 478, 624 (2009)

    Article  CAS  Google Scholar 

  17. S. Xi, K. Zuo, X. Li, G. Ran, J. Zhou, Acta Mater. 56, 6050 (2008)

    Article  CAS  Google Scholar 

  18. Y. Zhou, Q.X. Sun, Z.M. Xie, R. Liu, X.P. Wang, Q.F. Fang, C.S. Liu, J. Alloy. Compd. 585, 771 (2014)

    Article  CAS  Google Scholar 

  19. D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, 6th edn. (CRC Press, Boca Raton, 2017)

    Google Scholar 

  20. R.F. Zhang, S.H. Zhang, Z.J. He, J. Jing, S.H. Sheng, Comput. Phys. Commun. 209, 58 (2016)

    Article  CAS  Google Scholar 

  21. L. Zhang, H. Chen, Y. Ouyang, Y. Du, J. Rare Earth. 32, 343 (2014)

    Article  CAS  Google Scholar 

  22. A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica B+C 100, 1 (1980)

    Article  CAS  Google Scholar 

  23. H. Bakker, A. Miedema, Enthalpies in Alloys: Miedemas̓ Semi-Empirical Model (Trans Tech Publications, Uetikon, 1998)

    Book  Google Scholar 

  24. T.L. Wang, B.X. Liu, J. Alloy. Compd. 481, 156 (2009)

    Article  CAS  Google Scholar 

  25. A.K. Niessen, A.R. Miedema, F.R. de Boer, R. Boom, Physica B+C 151, 401  (1988)

    Article  CAS  Google Scholar 

  26. A.K. Niessen, A.R. Miedema, Phys. Chem. 87, 717 (1983)

    CAS  Google Scholar 

  27. J.M. López, J.A. Alonso, L.J. Gallego, Phys. Rev. B 36, 3716 (1987)

    Article  Google Scholar 

  28. V.K. Singh, V. Singh, A.K. Rai, S.N. Thakur, P.K. Rai, J.P. Singh, Appl. Optics 47, G38 (2008)

    Article  Google Scholar 

  29. G.D. Wei, C.S. Ren, M.Y. Qian, Q.Y. Nie, IEEE T. Plasma Sci. 39, 1842 (2011)

    Article  CAS  Google Scholar 

  30. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001)

    Article  CAS  Google Scholar 

  31. D. Witkin, B.Q. Han, E.J. Lavernia, Metall. Mater. Trans. A 37, 185 (2006)

    Article  Google Scholar 

  32. W. Yang, L.-Q. Chen, G.L. Messing, Mater. Sci. Eng. A 195, 179 (1995)

    Article  Google Scholar 

  33. J. Eckert, J.C. Holzer, C.E. Krill, W.L. Johnson, J. Appl. Phys. 73, 2794 (1993)

    Article  CAS  Google Scholar 

  34. W.C. Johnson, J.I.D. Alexander, J. Appl. Phys. 59, 2735 (1986)

    Article  Google Scholar 

  35. F.A. Alhendi, B.S. Kashkari, A.A. Alderremy, Am. J. Comput. Math. 6, 212 (2016)

    Article  Google Scholar 

  36. Y. Li, M.Q. Zeng, J.W. Liu, Z.C. Lu, Ceram. Int. 44, 18329 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangzhou Science and Technology Plan Projects (No. 201904020018), Guangdong Provincial Natural Science Foundation (No. 2019A1515010039; No. 2020A1515011548), and Fundamental Research Funds for the Central Universities, SCUT (No. 2019CG24). We thank Laura Kuhar, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. C. Lu or M. Q. Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.F., Lu, Z.C., Liu, Y.H. et al. Rapid Synthesis of W–Cr Solid–Solution by Dielectric-Barrier Discharge-Plasma-Assisted Ball Milling. Met. Mater. Int. 27, 5389–5398 (2021). https://doi.org/10.1007/s12540-021-00997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00997-6

Keywords

Navigation