Skip to main content
Log in

Quantum-Chemical Calculations for the Electronic Absorption Spectra of Certain Anthocyanidins

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Semi-empirical PM3 calculations are made for the electronic absorption spectra of colored forms of nonmethylated anthocyanidins (aurantinidin, pelargonidin, cyanidin, and delphinidin). The position of the absorption band peak is shown to depend on the orientation of hydroxyl groups in the aglycone structure. The observed tendency toward a bathochromic shift after ОН groups are added to the ring generally corresponds to experimental data. The results for the uncharged quinonoid forms of pelargonidin (a hypsochromic shift of absorption bands) do not in this case agree with the prevailing opinion of specialists about the bathochromic shift. While this opinion is confirmed by DFT calculations, there are still no reliable experimental data on their validity. The formation of single-charged (negatively) quinonoid structures is clearly the reason for the bathochromic shift of absorption bands, which is consistent with the experimental data. When the charge multiplicity increases (to −2), a hypsochromic shift of absorption bands to the experimentally observed yellow color of anthocyanins in alkaline solutions is again predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1.
Fig. 2.
Scheme 4.

Similar content being viewed by others

REFERENCES

  1. P. Trouillas, J. C. Sancho-Garcia, V. de Freitas, et al., Chem. Rev. 116, 4937 (2016). https://doi.org/10.1021/acs.chemrev.5b00507

    Article  CAS  PubMed  Google Scholar 

  2. O. Dangles and J.-A. Fenger, Molecules 23, 1970 (2018). https://doi.org/10.3390/molecules23081970

    Article  CAS  PubMed Central  Google Scholar 

  3. J. C. Lima, C. Vautier-Giongo, A. Lopes, et al., J. Phys. Chem. A 106, 5851 (2002). https://doi.org/10.1021/jp014081c

    Article  CAS  Google Scholar 

  4. P. M. Rose, V. Cantrill, M. Benohoud, et al., J. Agric. Food Chem. 66, 6790 (2018). https://doi.org/10.1021/acs.jafc.8b01044

    Article  CAS  PubMed  Google Scholar 

  5. V. I. Deineka, Ya. Yu. Kul’chenko, and L. A. Deineka, Russ. J. Phys. Chem. A 93, 572 (2019).

    Article  CAS  Google Scholar 

  6. W. E. Kurtin and P.-S. Song, Tetrahedron 24, 2255 (1968). https://doi.org/10.1016/0040-4020(68)88127-X

    Article  CAS  Google Scholar 

  7. K. Sakata, N. Saito, and T. Honda, Tetrahedron 62, 3721 (2006). https://doi.org/10.1016/j.tet.2006.01.081

    Article  CAS  Google Scholar 

  8. E. H. Anouar, J. Gierschner, J.-L. Duroux, et al., Food Chem. 131, 79 (2012). https://doi.org/10.1016/j.foodchem.2011.08.034

    Article  CAS  Google Scholar 

  9. A. A. Freitas, K. Shimizu, L. G. Dias, et al., J. Braz. Chem. Soc. 18, 1537 (2007).

    Article  CAS  Google Scholar 

  10. U. Terranova and D. R. Bowler, J. Chem. Theory Comput. 9, 3181 (2013). https://doi.org/10.1021/ct400356k

    Article  CAS  PubMed  Google Scholar 

  11. M. Rusishvili, L. Grisanti, S. Laporte, et al., Phys. Chem. Chem. Phys. 21, 8757 (2019). https://doi.org/10.1039/C9CP00747D

    Article  CAS  PubMed  Google Scholar 

  12. J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989). https://doi.org/10.1002/jcc.540100208

    Article  CAS  Google Scholar 

  13. R. Brouillard, S. Chassaing, G. Isorez, et al., in Recent Advances in Polyphenol Research, Ed. by C. Santos-Buelga, M. T. Escribano-Bailon, and V. Lattanzio (Blackwell, London, 2010), Vol. 2, p. 1.

    Google Scholar 

  14. H. E. Khoo, A. Azlan, S. T. Tang, et al., Food Nutr. Res. 61, 1361779 (2017). https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. He, X. Li, G. T. M. Silva, F. H. Quina, et al., J. Braz. Chem. Soc. 30, 492 (2019). https://doi.org/10.21577/0103-5053.20180233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Deineka.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deineka, V.I., Kulchenko, Y.Y. Quantum-Chemical Calculations for the Electronic Absorption Spectra of Certain Anthocyanidins. Russ. J. Phys. Chem. 95, 1378–1385 (2021). https://doi.org/10.1134/S0036024421070086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421070086

Keywords:

Navigation