Skip to main content
Log in

Molecular Layer Deposition and Pyrolysis of Polyamide Films on Si(111) with Formation of β-SiC

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Molecular layer deposition (MLD) of thin polyamide films was performed using 1,3,5-benzenetricarbonyltrichloride (trimesoyl chloride, TMC) and 1,2-ethylenediamine (EDA) as precursors at a temperature of 120°С. The growth rate at this temperature was 1.85 nm/cycle. In situ quartz crystal microbalance (QCM) study was used to determine the film growth behavior. QCM signal showed linear film growth with an increasing number of MLD cycles. Pyrolysis of MLD polyamide films on Si(111) was conducted at temperatures of 1100 and 1300°С and a pressure of 10−7 Torr. Thin heteroepitaxial films of β-SiC (3C–SiC) on the Si(111) were obtained as a result of a solid-phase reaction between Si and C at 1300°С. A variety of high-resolution spectroscopic techniques were used to determine the elemental composition and crystal structure of organic and ceramic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. E. Saddow and A. Agarwal, Advances in Silicon Carbide Processing and Applications (Artech House, London, 2004).

    Google Scholar 

  2. D. M. Lukin, C. Dory, M. A. Guidry, et al., Nat. Photon. 14, 330 (2020).

    Article  CAS  Google Scholar 

  3. F. Fuchs, B. Stender, M. Trupke, et al., Nat. Commun. 6, 7578 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. B. Duan, X. Yang, J. Lv, and Y. Yang, IEEE Trans. Electron Dev. 65, 3388 (2018).

    Article  CAS  Google Scholar 

  5. W. Jianwei, M. A. Capano, M. R. Melloch, and J. A. Cooper, IEEE Electron Dev. Lett. 23, 482 (2002).

    Article  Google Scholar 

  6. S. Lotfi, L. G. Li, Ö. Vallin, et al., Solid-State Electron. 70, 14 (2012).

    Article  CAS  Google Scholar 

  7. K. Powell, A. Shams-Ansari, S. Desai, et al., Opt Express 28, 4938 (2020).

    Article  PubMed  Google Scholar 

  8. J. R. Weber, W. F. Koehl, J. B. Varley, et al., J. Appl. Phys. 109, 102417 (2011).

    Article  CAS  Google Scholar 

  9. R. Choudhary, R. Biswas, B. Pan, and D. Paudyal, MRS Adv. 4, 2217 (2019).

    Article  CAS  Google Scholar 

  10. V. Presser, M. Heon, and Y. Gogotsi, Adv. Funct. Mater. 21, 810 (2011).

    Article  CAS  Google Scholar 

  11. J. Hass, W. A. de Heer, and E. H. Conrad, J. Phys.: Condens. Matter 20, 323202 (2008).

    Google Scholar 

  12. C. A. Zorman, S. Rajgopal, X. A. Fu, et al., Electrochem. Solid State Lett. 5 (10), G99 (2002).

    Article  CAS  Google Scholar 

  13. N. Ledermann, P. Muralt, N. Xantopoulos, and J.‑M. Tellenbach, Surf. Coat. Technol. 125, 246 (2000).

    Article  CAS  Google Scholar 

  14. R. Brütsch, Thin Solid Films 126, 313 (1985).

    Article  Google Scholar 

  15. L. Tong, M. Mehregany, and W. C. Tang, in Proceedings of the IEEE Micro Electro Mechanical Systems Conference, Fort Lauderdale, FL, 1993.

  16. M. J. Loboda, J. A. Seifferly, and F. C. Dall, J. Vacuum Sci. Technol. A 12, 90 (1994).

    Article  CAS  Google Scholar 

  17. Q. J. Cheng, S. Y. Xu, J. D. Long, and K. Ostrikov, Chem. Vapor Deposit. 13, 561 (2007).

    Article  CAS  Google Scholar 

  18. A. Severino, G. D’Arrigo, C. Bongiorno, et al., J. Appl. Phys. 102, 023518 (2007).

    Article  CAS  Google Scholar 

  19. Y. Watanabe, T. Horikawa, and K. Kamimura, Jpn. J. Appl. Phys. 53, 045601 (2014).

    Article  CAS  Google Scholar 

  20. S. I. Molina, F. M. Morales, and D. Araujo, Mater. Sci. Eng. B 80, 342 (2001).

    Article  Google Scholar 

  21. B. Yang, Y. Zhou, W. Cai, et al., Appl. Phys. Lett. 64, 1445 (1994).

    Article  CAS  Google Scholar 

  22. V. Luchinin, S. Goloudina, V. Pasyuta, et al., Jpn. J. Appl. Phys. 56, 06GH08 (2017).

    Article  Google Scholar 

  23. H. Pan, H. Guo, E. Lu, et al., J. Electron Spectrosc. Relat. Phenom. 101, 685 (1999). https://doi.org/10.1016/S0368-2048(98)00390-9

    Article  Google Scholar 

  24. B. Jin, P. He, Y. Sheng, and B. Yang, J. Phys. Chem. Solids 64, 339 (2003).

    Article  CAS  Google Scholar 

  25. G. Leal, T. Campos, A. Sobrinho, et al., Mater. Res. 17, 472 (2014).

    Article  CAS  Google Scholar 

  26. R. G. DeAnna, A. J. Fleischman, C. A. Zorman, and M. Mehregany, J. Chem. Vapor Deposit. 6, 280 (1998).

    CAS  Google Scholar 

  27. J. M. Carballo, Thesis (Univ. South Florida, Tampa, 2010).

  28. S. M. George, B. Yoon, and A. A. Dameron, Acc. Chem. Res. 42, 498 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. A. A. Malygin, V. E. Drozd, A. A. Malkov, and V. M. Smirnov, Chem. Vapor Deposit. 21 (10–12), 216 (2015).

    Article  CAS  Google Scholar 

  30. S. M. George, Chem. Rev. 110, 111 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. T. Yoshimura, S. Tatsuura, and W. Sotoyama, Appl. Phys. Lett. 59, 482 (1991).

    Article  CAS  Google Scholar 

  32. Y. Du and S. M. George, J. Phys. Chem. C 111, 8509 (2007).

    Article  CAS  Google Scholar 

  33. N. M. Adamczyk, A. A. Dameron, and S. M. George, Langmuir 24, 2081 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. P. Loscutoff, H. Zhou, S. Clendenning, and S. Bent, ACS Nano 4, 331 (2009).

    Article  CAS  Google Scholar 

  35. T. Yoshimura, S. Tatsuura, W. Sotoyama, et al., Appl. Phys. Lett. 60, 268 (1992).

    Article  CAS  Google Scholar 

  36. T. V. Ivanova, P. S. Maydannik, and D. C. Cameron, J. Vacuum Sci. Technol. A 30, 01A121 (2012).

  37. A. Abdulagatov, K. Terauds, J. Travis, et al., J. Phys. Chem. C 117, 17442 (2012).

    Article  CAS  Google Scholar 

  38. J. W. DuMont and S. M. George, J. Phys. Chem. C 119, 14603 (2015).

    Article  CAS  Google Scholar 

  39. P. Yang, G. Wang, Z. Gao, et al., Materials (Basel) 6, 5602 (2013).

    Article  CAS  Google Scholar 

  40. G. F. L. Ehlers, K. R. Fisch, and W. R. Powell, J. Polym. Sci., Part A 8, 3511 (1970).

    CAS  Google Scholar 

  41. M. Herrera, G. Matuschek, and A. Kettrup, J. Therm. Anal. Calorim. 59, 385 (2000).

    Article  CAS  Google Scholar 

  42. H. Hatori, Y. Yamada, M. Shiraishi, et al., Carbon 34, 201 (1996).

    Article  CAS  Google Scholar 

  43. W. Xie, W.-P. Pan, and K. Chuang, J. Therm. Anal. Calorim. 64, 477 (2001).

    Article  CAS  Google Scholar 

  44. V. Krongauz, J. Therm. Anal. Calorim. 102, 435 (2010).

    Article  CAS  Google Scholar 

  45. L. Ju, Thesis (Lehigh Univ., Bethlehem, PA, 2018).

  46. D. J. Higgs, J. W. DuMont, K. Sharma, and S. M. George, J. Vacuum Sci. Technol. A 36, 01A117 (2018).

  47. H. J. Kim, K. Choi, Y. Baek, et al., ACS Appl. Mater. Interfaces 6, 2819 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra, Ed. by R. A. Nyquist (Academic, San Diego, 2001), Chap. 9, p. 351.

    Google Scholar 

  49. A. A. Pud, K. Y. Fatyeyeva, J. F. Bardeau, et al., J. Macromol. Sci., Part A 44, 183 (2007).

    CAS  Google Scholar 

  50. Y. Furukawa, F. Ueda, Y. Hyodo, et al., Macromolecules 21, 1297 (1988).

    Article  CAS  Google Scholar 

  51. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. (Am. Chem. Soc., 2002).

    Google Scholar 

  52. A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).

    Article  CAS  Google Scholar 

  53. J. Maultzsch, S. Reich, and C. Thomsen, Phys. Rev. B 70, 155403 (2004).

    Article  CAS  Google Scholar 

  54. A. C. Ferrari, Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  55. T. Ohnishi, I.Murase, T. Noguchi, and M. Hirooka, Synth. Met. 18, 497 (1987).

    Article  CAS  Google Scholar 

  56. J. C. Burton, L. Sun, M. Pophristic, et al., J. Appl. Phys. 84, 6268 (1998).

    Article  CAS  Google Scholar 

  57. S. Nakashima and H. Harima, Phys. Status Solidi A 162, 39 (1997).

    Article  CAS  Google Scholar 

  58. B. Yang, W. Cai, P. He, et al., J. Appl. Phys. 77, 6733 (1995).

    Article  CAS  Google Scholar 

  59. J. Chen, A. J. Steckl, and M. J. Loboda, J. Vacuum Sci. Technol. B 16, 1305 (1998).

    Article  CAS  Google Scholar 

  60. L. Moro, A. Paul, D. C. Lorents, et al., J. Appl. Phys. 81, 6141 (1997).

    Article  CAS  Google Scholar 

  61. GaussView, Version 6 (2016).

  62. T. S. Nisao Nakashima, Jpn. J. Appl. Phys. 5, 874 (1966).

    Article  Google Scholar 

  63. K. Kim, C. Park, J. Roh, et al., J. Vacuum Sci. Technol. A 19, 2636 (2001).

    Article  CAS  Google Scholar 

  64. W. Z. A. W. Jusoh, S. A. Rahman, A. L. Ahmad, and N. M. Mokhtar, C. R. Chim. 22, 755 (2019).

    Article  CAS  Google Scholar 

  65. Y. Wang, Z. Fang, S. Zhao, et al., RSC Adv. 8, 22469 (2018).

    Article  CAS  Google Scholar 

  66. F. Pacheco, R. Sougrat, M. Reinhard, et al., J. Membr. Sci. 501, 33 (2016).

    Article  CAS  Google Scholar 

  67. M. Bosi,  C.  Ferrari,  D. Nilsson, and P. Ward, CrystEngComm18, 7478 (2016).

    Article  CAS  Google Scholar 

  68. S. Madapura, A. Steckl, and M. Loboda, J. Electrochem. Soc. 146, 1197 (1999).

    Article  CAS  Google Scholar 

  69. R. Scholz, U. Gosele, E. Niemann, et al., Diamond Relat. Mater. 6, 1365 (1997).

    Article  CAS  Google Scholar 

  70. K. M. Fitzer and W. Schaefer, in Chemistry and Physics of Carbon, Ed. by P. L. Walker (Marcel Dekker, New York, 1971), Vol. 7, p. 329.

    Google Scholar 

  71. G. Dufour, F. Rochet, F. C. Stedile, et al., Phys. Rev. B 56, 4266 (1997).

    Article  CAS  Google Scholar 

  72. J. Pezoldt and V. Cimalla, Crystals 10, 523 (2020).

    Article  CAS  Google Scholar 

  73. V. Kuzmina, S. Soldatenko, and A. Sinelnikov, Altern. Energy Ecol., p. 96 (2018). https://doi.org/10.15518/isjaee.2018.22-24.096-106

  74. K. Teker, K. H. Lee, C. Jacob, et al., MRS Proc. 640, H5.10 (2011).

  75. A. J. Learn and I. H. Khan, Thin Solid Films 5, 145 (1970).

    Article  CAS  Google Scholar 

  76. V. M. Ievlev, V. S. Ilyin, S. B. Kushev, S. A. Soldatenko, A. N. Lukin, and E. K. Belonogov, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 3, 791 (2009).

    Article  Google Scholar 

  77. K. Jurkiewicz, M. Pawlyta, and A. Burian, J. Carbon Res. 4, 68 (2018).

  78. R. Bantaculo, H. Fukidome, and M. Suemitsu, IOP Conf. Ser.: Mater. Sci. Eng. 79, 012004 (2015).

Download references

ACKNOWLEDGMENTS

The authors thank A.M. Ismailov (Faculty of Physical Electronics, Dagestan State University) for his technical assistance and help in obtaining RHEED patterns.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-33-90045 (R.R. Amashaev); and partially by the Government of the Russian Federation, grant no. FZNZ-2020-0002 (I.M. Abdulagatov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amashaev, R.R., Abdulagatov, I.M., Rabadanov, M.K. et al. Molecular Layer Deposition and Pyrolysis of Polyamide Films on Si(111) with Formation of β-SiC. Russ. J. Phys. Chem. 95, 1439–1448 (2021). https://doi.org/10.1134/S0036024421070049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421070049

Keywords:

Navigation