Skip to main content
Log in

Synthesis and Characterization of Citrusinol Acetyl Derivative, and Its Interactions with DNA and BSA: 13C NMR, 1H NMR, HMBC, Fluorescence, UV–Vis spectrum, and Molecular Docking

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Citrusinol was regarded as an antineoplastic agent, and acetyl-citrusinol was synthesized as a new derivative of citrusinol. The interactions of bovine serum albumin (BSA) and calf thymus DNA (ct-DNA) with citrusinol and acetyl-citrusinol were studied. The structure of acetyl-citrusinol was identified by nuclear magnetic resonance (13C NMR, 1H NMR) and heteronuclear multiple-bond correlation (HMBC). Fluorescence spectrum and molecular docking were used to investigate the interactions of citrusinol and acetyl-citrusinol with BSA. The UV–Vis spectroscopy was used to study the interactions of citrusinol and acetyl-citrusinol with ct-DNA. The citrusinol and acetyl-citrusinol combining with BSA showed the fluorescence quenching and a decrease in the maximum emission wavelength. The molecular docking results showed that there were stable combinations of citrusinol and acetyl-citrusinol with BSA. Thus, the interactions between citrusinol and acetyl-citrusinol with BSA were mainly hydrophobic and hydrogen bonding. According to the UV–Vis spectrum, citrusinol, and acetyl-citrusinol interacted with ct-DNA via electrostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. W. Tian, Phytochemistry 26, 3094 (1987).

    Article  Google Scholar 

  2. M. Y. Shang, J. Li, S. Q. Cai, et al., Chin. Tradit. Herbal. Drugs 31, 569 (2000).

    CAS  Google Scholar 

  3. C. C. Shen, S. T. Wang, S. Y. Tsai, et al., J. Nat. Prod. 68, 791 (2005).

    Article  CAS  Google Scholar 

  4. N. Gan, X. Yang, T. H. Li, et al., Chin. J. Chin. Mater. Med. 33, 2077 (2008).

    CAS  Google Scholar 

  5. N. Gan, T. H. Li, X. Yang, et al., Chin. Tradit. Herbal. Drugs 40, 852 (2009).

    CAS  Google Scholar 

  6. Y. Liu, G. S. Lu, W. J. Lu, et al., Nat. Prod. Res. Dev. 29, 135 (2012).

    Google Scholar 

  7. S. Ashoka, J. Seetharamappa, and P. B. Kandagal, J. Lumin. 121, 179 (2006).

    Article  CAS  Google Scholar 

  8. T. Peter, Adv. Protein Chem. 37, 161 (1985).

    Article  Google Scholar 

  9. N. Keswani, S. Choudhary, and N. Kishore, J. Chem. Thermodyn. 58, 196 (2013).

    Article  CAS  Google Scholar 

  10. D. S. Park, C. E. Petersen, C. Ha, et al., IUBMB Life 48, 169 (1999).

    Article  CAS  Google Scholar 

  11. X. H. Wu, J. J. Liu, H. M. Huang, et al., Int. J. Biol Macromol. 49, 343 (2011).

    Article  CAS  Google Scholar 

  12. C. V. Kumar and E. H. Asuncion, J. Am. Chem Soc. 115, 8547 (1993).

    Article  CAS  Google Scholar 

  13. S. Y. Bi, L. L. Yan, Y. Wang, et al., J. Lumin. 132, 2355 (2012).

    Article  CAS  Google Scholar 

  14. S. Salehzadeh, F. Hajibabaei, N. H. Moghadam, et al., J. Fluoresc. 28, 195 (2017).

    Article  Google Scholar 

  15. A. V. Fratimi, M. L. Kopka, H. R. Drew, et al., J. Biol. Chem. 257, 14686 (1982).

    Article  Google Scholar 

  16. W. J. Lu, G. S. Lu, X. Tan, et al., J. Chin. Med. Mater. 36, 1953 (2013).

    CAS  Google Scholar 

  17. D. C. Carter and J. X. Ho, Adv. Protein. Chem. 45, 153 (1994).

    Article  CAS  Google Scholar 

  18. N. S. Quiming, R. B. Vergel, M. G. Nicolas, et al., J. Health. Sci. 51, 8e15 (2005).

  19. K. Karami, F. Parsianrad, M. Alinaghi, et al., Inorg. Chim. Acta 467, 46 (2017).

    Article  CAS  Google Scholar 

  20. C. Q. Jiang, M. X. Gao, and J. H. He, Anal. Chim. Acta 452, 185 (2002).

    Article  CAS  Google Scholar 

  21. K. Jing, X. J. Guo, X. Diao, N. N. Zhou, and Y. J. Zhu, J. Lumin. 157, 184 (2015).

    Article  CAS  Google Scholar 

  22. P. D. Ross and S. Subramanian, Biochemistry 20, 3096 (1981).

    Article  CAS  Google Scholar 

  23. J. B. Xiao, X. L. Wei, Y. F. Wang, et al., Spectrochim. Acta, A 74, 977 (2009).

    Article  Google Scholar 

  24. G. W. Zhang, A. P. Wang, and T. Jiang, J. Mol. Struct. 891, 93 (2008).

    Article  CAS  Google Scholar 

  25. Y. G. Ni, S. S. Wang, and S. Kokot, Anal. Chim. Acta 663, 139 (2010).

    Article  CAS  Google Scholar 

  26. Y. Ni, S. Su, and S. Kokot, Spectrochim. Acta, A 75, 547 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Guangxi Province (2017GXNSFBA198214, 2019GXNSFAA245081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. F. Huang, X. X. Hu or G. S. Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z.F., Hu, X.X., Lu, G.S. et al. Synthesis and Characterization of Citrusinol Acetyl Derivative, and Its Interactions with DNA and BSA: 13C NMR, 1H NMR, HMBC, Fluorescence, UV–Vis spectrum, and Molecular Docking. Russ. J. Phys. Chem. 95, 1394–1401 (2021). https://doi.org/10.1134/S0036024421070128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421070128

Keywords:

Navigation