Skip to main content

Advertisement

Log in

Ketamine in the Past, Present, and Future: Mechanisms, Metabolites, and Toxicity

  • Anesthetic Techniques in Pain Management (D Wang, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

A Correction to this article was published on 18 September 2021

This article has been updated

Abstract

Purpose of Review

While ketamine’s analgesia has mostly been attributed to antagonism of N-methyl-d-aspartate receptors, evidence suggests multiple other pathways are involved in its antidepressant and possibly analgesic activity. These mechanisms and ketamine’s role in the nociplastic pain paradigm are discussed. Animal studies demonstrating ketamine’s neurotoxicity have unclear human translatability and findings from key rodent and human studies are presented.

Recent Findings

Ketamine’s metabolites, and (2R,6R)-hydroxynorketamine in particular, may play a greater role in its clinical activity than previously believed. The activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and the mammalian target of rapamycin by ketamine are mechanisms that are still being elucidated. Ketamine might work best in nociplastic pain, which involves altered pain processing.

Summary

While much is known about ketamine, new studies will continue to define its role in clinical medicine. Evidence supporting ketamine’s neurotoxicity in humans is lacking and should not impede future ketamine clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth. 2011;58(10):911–23.

    Article  PubMed  Google Scholar 

  2. Maher DP, Chen L, Mao J. Intravenous ketamine infusions for neuropathic pain management: a promising therapy in need of optimization. Anesth Analg. 2017;124(2):661–74.

    Article  CAS  PubMed  Google Scholar 

  3. Pickering G, Pereira B, Morel V, Corriger A, Giron F, Marcaillou F, et al. Ketamine and magnesium for refractory neuropathic pain: a randomized, double-blind, crossover trial. Anesthesiology. 2020;133(1):154–64.

    Article  CAS  PubMed  Google Scholar 

  4. Corriger A, Pickering G. Ketamine and depression: a narrative review. Drug Des Devel Ther. 2019;13:3051–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orhurhu VJ, Roberts JS, Ly N, Cohen SP. Ketamine in acute and chronic pain management. In: StatPearls, edn. eds. Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  6. Petrenko AB, Yamakura T, Askalany AR, Kohno T, Sakimura K, Baba H. Effects of ketamine on acute somatic nociception in wild-type and N-methyl-D-aspartate (NMDA) receptor epsilon1 subunit knockout mice. Neuropharmacology. 2006;50(6):741–7.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen SP, Bhatia A, Buvanendran A, et al. Consensus guidelines on the use of intravenous ketamine infusions for chronic pain from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):521–46 Great summary of ketamine’s various receptor interactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Paul RK, Singh NS, Khadeer M, Moaddel R, Sanghvi M, Green CE, et al. (R,S)-ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology. 2014;121(1):149–59.

    Article  CAS  PubMed  Google Scholar 

  9. Schwenk ES, Viscusi ER, Buvanendran A, Hurley RW, Wasan AD, Narouze S, et al. Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):456–66.

    PubMed  PubMed Central  Google Scholar 

  10. Avidan MS, Maybrier HR, Abdallah AB, Jacobsohn E, Vlisides PE, Pryor KO, et al. Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. Lancet. 2017;390(10091):267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manohar S, Maxwell D, Winters WD. Development of EEG seizure activity during and after chronic ketamine administration in the rat. Neuropharmacology. 1972;11(6):819–26.

    Article  CAS  PubMed  Google Scholar 

  12. DeVore GR, McQueen JK, Woodbury DM. Ketamine hydrochloride and its effect on a chronic cobalt epileptic cortical focus. Epilepsia. 1976;17(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  13. Voss LJ, Sleigh JW, Barnard JP, Kirsch HE. The howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008;107(5):1689–703.

    Article  PubMed  Google Scholar 

  14. Fang Y, Wang X. Ketamine for the treatment of refractory status epilepticus. Seizure. 2015;30:14–20.

    Article  PubMed  Google Scholar 

  15. Green SM, Cote CJ. Ketamine and neurotoxicity: clinical perspectives and implications for emergency medicine. Ann Emerg Med. 2009;54(2):181–90.

    Article  PubMed  Google Scholar 

  16. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of Ci-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther. 1965;6:279–91.

    Article  CAS  PubMed  Google Scholar 

  17. Corssen G, Miyasaka M, Domino EF. Changing concepts in pain control during surgery: dissociative anesthesia with CI-581. A progress report. Anesth Analg. 1968;47(6):746–59.

    Article  CAS  PubMed  Google Scholar 

  18. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.

    Article  CAS  PubMed  Google Scholar 

  19. Zarate CA Jr, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

    Article  CAS  PubMed  Google Scholar 

  20. Lapidus KA, Levitch CF, Perez AM, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry. 2014;76(12):970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matveychuk D, Thomas RK, Swainson J, et al. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol. 2020;10:2045125320916657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duman CH, Duman RS. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett. 2015;601:20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faccio AT, Ruperez FJ, Singh NS, Angulo S, Tavares MFM, Bernier M, et al. Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells. Biochim Biophys Acta Gen Subj. 2018;1862(6):1505–15.

    Article  CAS  PubMed  Google Scholar 

  25. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol. 2013;698(1-3):228–34.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546(7659):E1–3.

    Article  CAS  PubMed  Google Scholar 

  27. Singh NS, Zarate CA Jr, Moaddel R, Bernier M, Wainer IW. What is hydroxynorketamine and what can it bring to neurotherapeutics? Expert Rev Neurother. 2014;14(11):1239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kroin JS, Das V, Moric M, Buvanendran A. Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain. Reg Anesth Pain Med. 2019;44(1):111–7 Preclinical evidence of antinociceptive effects of ketamine metabolite.

    Article  PubMed  Google Scholar 

  29. Lilius TO, Viisanen H, Jokinen V, et al. Interactions of (2S,6S;2R,6R)-hydroxynorketamine, a secondary metabolite of (R,S)-ketamine, with morphine. Basic Clin Pharmacol Toxicol. 2018;122(5):481–8.

    Article  CAS  PubMed  Google Scholar 

  30. Moaddel R, Venkata SL, Tanga MJ, et al. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome. Talanta. 2010;82(5):1892–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukumoto K, Fogaca MV, Liu RJ, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc Natl Acad Sci U S A. 2019;116(1):297–302.

    Article  CAS  PubMed  Google Scholar 

  33. Aguilar-Valles A, De Gregorio D, Matta-Camacho E, et al. Antidepressant actions of ketamine engage cell-specific translation via eIF4E. Nature. 2021;590(7845):315–9.

    Article  CAS  PubMed  Google Scholar 

  34. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: direct inhibition and disinhibition. Neuropharmacology. 2016;100:17–26.

    Article  CAS  PubMed  Google Scholar 

  35. Dwyer JM, Duman RS. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry. 2013;73(12):1189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naughton M, Clarke G, O’Leary OF, Cryan JF, Dinan TG. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action. J Affect Disord. 2014;156:24–35.

    Article  CAS  PubMed  Google Scholar 

  37. Udesky JO, Spence NZ, Achiel R, Lee C, Flood P. The role of nicotinic inhibition in ketamine-induced behavior. Anesth Analg 2005; 101(2):407-411, table of contents.

  38. Knott VJ, Millar AM, McIntosh JF, et al. Separate and combined effects of low dose ketamine and nicotine on behavioural and neural correlates of sustained attention. Biol Psychol. 2011;88(1):83–93.

    Article  PubMed  Google Scholar 

  39. D’Souza DC, Ahn K, Bhakta S, et al. Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia. Biol Psychiatry. 2012;72(9):785–94.

    Article  PubMed  CAS  Google Scholar 

  40. Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, et al. Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology. 1998;88(3):768–74.

    Article  CAS  PubMed  Google Scholar 

  41. Wang N, Yu HY, Shen XF, Gao ZQ, Yang C, Yang JJ, et al. The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups J Med Sci. 2015;120(4):241–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pradhan B, Mitrev L, Moaddell R, Wainer IW. D-serine is a potential biomarker for clinical response in treatment of post-traumatic stress disorder using (R,S)-ketamine infusion and TIMBER psychotherapy: a pilot study. Biochim Biophys Acta, Proteins Proteomics. 2018;1866(7):831–9 Key article about role of d-serine pathways with ketamine.

    Article  CAS  PubMed  Google Scholar 

  43. Lefevre Y, Amadio A, Vincent P, et al. Neuropathic pain depends upon D-serine co-activation of spinal NMDA receptors in rats. Neurosci Lett. 2015;603:42–7.

    Article  CAS  PubMed  Google Scholar 

  44. Choi SR, Roh DH, Yoon SY, et al. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol Pain. 2019;15:1744806919843046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Kock M, Loix S, Lavand’homme P. Ketamine and peripheral inflammation. CNS Neurosci Ther. 2013;19(6):403–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shaked G, Czeiger D, Dukhno O, Levy I, Artru AA, Shapira Y, et al. Ketamine improves survival and suppresses IL-6 and TNFalpha production in a model of Gram-negative bacterial sepsis in rats. Resuscitation. 2004;62(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  47. Yu M, Shao D, Yang R, Feng X, Zhu S, Xu J. Effects of ketamine on pulmonary inflammatory responses and survival in rats exposed to polymicrobial sepsis. J Pharm Pharm Sci. 2007;10(4):434–42.

    Article  CAS  PubMed  Google Scholar 

  48. Yu M, Shao D, Feng X, Duan M, Xu J. Effects of ketamine on pulmonary TLR4 expression and NF-kappa-B activation during endotoxemia in rats. Methods Find Exp Clin Pharmacol. 2007;29(6):395–9.

    Article  CAS  PubMed  Google Scholar 

  49. Park M, Newman LE, Gold PW, Luckenbaugh DA, Yuan P, Machado-Vieira R, et al. Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment-resistant depression. J Psychiatr Res. 2017;84:113–8.

    Article  PubMed  Google Scholar 

  50. Chen MH, Li CT, Lin WC, et al. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: a randomized, double-blind control study. Psychiatry Res. 2018;269:207–11 Study that found ketamine has anti-inflammatory effects.

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Shen R, Wen G, et al. Effects of ketamine on levels of inflammatory cytokines IL-6, IL-1beta, and TNF-alpha in the hippocampus of mice following acute or chronic administration. Front Pharmacol. 2017;8:139.

    PubMed  PubMed Central  Google Scholar 

  52. Zhang Z, Zhang L, Zhou C, Wu H. Ketamine inhibits LPS-induced HGMB1 release in vitro and in vivo. Int Immunopharmacol. 2014;23(1):14–26.

    Article  PubMed  CAS  Google Scholar 

  53. Ho MF, Zhang C, Zhang L, Li H, Weinshilboum RM. Ketamine and active ketamine metabolites regulate STAT3 and the type I interferon pathway in human microglia: molecular mechanisms linked to the antidepressant effects of ketamine. Front Pharmacol. 2019;10:1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kadriu B, Farmer CA, Yuan P, Park LT, Deng ZD, Moaddel R, et al. The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0589-8.

  55. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244(4910):1360–2.

    Article  CAS  PubMed  Google Scholar 

  56. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A. 1986;83(18):7104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fix AS, Wozniak DF, Truex LL, McEwen M, Miller JP, Olney JW. Quantitative analysis of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulate/retrosplenial cortex. Brain Res. 1995;696(1-2):194–204.

    Article  CAS  PubMed  Google Scholar 

  58. Wozniak DF, Brosnan-Watters G, Nardi A, McEwen M, Corso TD, Olney JW, et al. MK-801 neurotoxicity in male mice: histologic effects and chronic impairment in spatial learning. Brain Res. 1996;707(2):165–79.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang S, Li X, Jin W, Duan X, Bo L, Wu J, et al. Ketamine-induced neurotoxicity blocked by N-Methyl-d-aspartate is mediated through activation of PKC/ERK pathway in developing hippocampal neurons. Neurosci Lett. 2018;673:122–31.

    Article  CAS  PubMed  Google Scholar 

  60. Bates MLS, Trujillo KA. Long-lasting effects of repeated ketamine administration in adult and adolescent rats. Behav Brain Res. 2019;369:111928 Animal study showing no cognitive deficits after repeated ketamine doses to rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anand KJ, Garg S, Rovnaghi CR, et al. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  62. Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 2018;12:845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fujikawa DG. Neuroprotective effect of ketamine administered after status epilepticus onset. Epilepsia. 1995;36(2):186–95.

    Article  CAS  PubMed  Google Scholar 

  64. Bell JD. In Vogue: ketamine for neuroprotection in acute neurologic injury. Anesth Analg. 2017;124(4):1237–43.

    Article  CAS  PubMed  Google Scholar 

  65. Jevtovic-Todorovic V, Wozniak DF, Powell S, Nardi A, Olney JW. Clonidine potentiates the neuropathic pain-relieving action of MK-801 while preventing its neurotoxic and hyperactivity side effects. Brain Res. 1998;781(1-2):202–11.

    Article  CAS  PubMed  Google Scholar 

  66. Auer RN, Coulter KC. The nature and time course of neuronal vacuolation induced by the N-methyl-D-aspartate antagonist MK-801. Acta Neuropathol. 1994;87(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  67. Purcell R, Lynch G, Gall C, Johnson S, Sheng Z, Stephen MR, et al. Brain vacuolation resulting from administration of the type II ampakine CX717 is an artifact related to molecular structure and chemical reaction with tissue fixative agents. Toxicol Sci. 2018;162(2):383–95.

    Article  CAS  PubMed  Google Scholar 

  68. Olney JW, Labruyere J, Wang G, Wozniak D, Price M, Sesma M. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254(5037):1515–8.

    Article  CAS  PubMed  Google Scholar 

  69. Garner R, Gopalakrishnan S, McCauley JA, Bednar RA, Gaul SL, Mosser SD, et al. Preclinical pharmacology and pharmacokinetics of CERC-301, a GluN2B-selective N-methyl-D-aspartate receptor antagonist. Pharmacol Res Perspect. 2015;3(6):e00198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Koffler SP, Hampstead BM, Irani F, et al. The neurocognitive effects of 5 day anesthetic ketamine for the treatment of refractory complex regional pain syndrome. Arch Clin Neuropsychol. 2007;22(6):719–29.

    Article  PubMed  Google Scholar 

  71. Kiefer RT, Rohr P, Ploppa A, Dieterich HJ, Grothusen J, Koffler S, et al. Efficacy of ketamine in anesthetic dosage for the treatment of refractory complex regional pain syndrome: an open-label phase II study. Pain Med. 2008;9(8):1173–201.

    Article  PubMed  Google Scholar 

  72. Diamond PR, Farmery AD, Atkinson S, Haldar J, Williams N, Cowen PJ, et al. Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J Psychopharmacol. 2014;28(6):536–44.

    Article  PubMed  CAS  Google Scholar 

  73. Shiroma PR, Thuras P, Wels J, et al. Neurocognitive performance of repeated versus single intravenous subanesthetic ketamine in treatment resistant depression. J Affect Disord. 2020;277:470–7 Human study that found no evidence of neurocognitive deficits after repeated ketamine doses.

    Article  CAS  PubMed  Google Scholar 

  74. Crisanti C, Enrico P, Fiorentini A, Delvecchio G, Brambilla P. Neurocognitive impact of ketamine treatment in major depressive disorder: a review on human and animal studies. J Affect Disord. 2020;276:1109–18.

    Article  CAS  PubMed  Google Scholar 

  75. Trouvin AP, Perrot S. New concepts of pain. Best Pract Res Clin Rheumatol. 2019;33(3):101415.

    Article  PubMed  Google Scholar 

  76. Freynhagen R, Parada HA, Calderon-Ospina CA, Chen J, Rakhmawati Emril D, Fernández-Villacorta FJ, et al. Current understanding of the mixed pain concept: a brief narrative review. Curr Med Res Opin. 2019;35(6):1011–8.

    Article  PubMed  Google Scholar 

  77. Shraim MA, Masse-Alarie H, Hall LM, Hodges PW. Systematic review and synthesis of mechanism-based classification systems for pain experienced in the musculoskeletal system. Clin J Pain. 2020;36(10):793–812.

    Article  PubMed  Google Scholar 

  78. International Association for the Study of Pain. IASP Terminology [https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698]. Accessed 20 Sep 2020

  79. Cifre I, Sitges C, Fraiman D, Muñoz MÁ, Balenzuela P, González-Roldán A, et al. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med. 2012;74(1):55–62.

    Article  PubMed  Google Scholar 

  80. Baliki MN, Mansour AR, Baria AT, Apkarian AV. Functional reorganization of the default mode network across chronic pain conditions. PLoS One. 2014;9(9):e106133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ferro Moura Franco K, Lenoir D, Dos Santos Franco YR, et al. Prescription of exercises for the treatment of chronic pain along the continuum of nociplastic pain: a systematic review with meta-analysis. Eur J Pain. 2021;25(1):51–70 Systematic review that helps put nociplastic pain in perspective.

    Article  PubMed  Google Scholar 

  82. Undeland M, Malterud K. The fibromyalgia diagnosis: hardly helpful for the patients? A qualitative focus group study. Scand J Prim Health Care. 2007;25(4):250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Freynhagen R, Baron R. The evaluation of neuropathic components in low back pain. Curr Pain Headache Rep. 2009;13(3):185–90.

    Article  PubMed  Google Scholar 

  84. Bailly F, Cantagrel A, Bertin P, et al. Part of pain labelled neuropathic in rheumatic disease might be rather nociplastic. RMD Open. 2020;6(2):e001326.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Schwenk ES, Dayan AC, Rangavajjula A, Torjman MC, Hernandez MG, Lauritsen CG, et al. Ketamine for refractory headache: a retrospective analysis. Reg Anesth Pain Med. 2018;43(8):875–9.

    CAS  PubMed  Google Scholar 

  86. Pomeroy JL, Marmura MJ, Nahas SJ, Viscusi ER. Ketamine infusions for treatment refractory headache. Headache. 2017;57(2):276–82.

    Article  PubMed  Google Scholar 

  87. Schulman E. Refractory migraine—a review. Headache. 2013;53(4):599–613.

    Article  PubMed  Google Scholar 

  88. Orhurhu V, Orhurhu MS, Bhatia A, Cohen SP. Ketamine infusions for chronic pain: a systematic review and meta-analysis of randomized controlled trials. Anesth Analg. 2019;129(1):241–54.

    Article  CAS  PubMed  Google Scholar 

  89. Popkirov S, Enax-Krumova EK, Mainka T, Hoheisel M, Hausteiner-Wiehle C. Functional pain disorders—more than nociplastic pain. NeuroRehabilitation. 2020;47(3):343–53.

    Article  PubMed  Google Scholar 

  90. Sigtermans MJ, van Hilten JJ, Bauer MC, et al. Ketamine produces effective and long-term pain relief in patients with Complex Regional Pain Syndrome Type 1. Pain. 2009;145:304–11.

    Article  CAS  PubMed  Google Scholar 

  91. Schwartzman RJ, Alexander GM, Grothusen JR, Paylor T, Reichenberger E, Perreault M. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: a double-blind placebo controlled study. Pain. 2009;147(1-3):107–15.

    Article  CAS  PubMed  Google Scholar 

  92. Kirkpatrick AF, Saghafi A, Yang K, Qiu P, Alexander J, Bavry E, et al. Optimizing the treatment of CRPS with ketamine. Clin J Pain. 2020;36(7):516–23.

    Article  PubMed  Google Scholar 

  93. Sorensen J, Bengtsson A, Backman E, Henriksson KG, Bengtsson M. Pain analysis in patients with fibromyalgia. Effects of intravenous morphine, lidocaine, and ketamine. Scand J Rheumatol. 1995;24(6):360–5.

    Article  CAS  PubMed  Google Scholar 

  94. Sorensen J, Bengtsson A, Ahlner J, et al. Fibromyalgia—are there different mechanisms in the processing of pain? A double blind crossover comparison of analgesic drugs. J Rheumatol. 1997;24(8):1615–21.

    CAS  PubMed  Google Scholar 

  95. Handa F, Tanaka M, Nishikawa T, Toyooka H. Effects of oral clonidine premedication on side effects of intravenous ketamine anesthesia: a randomized, double-blind, placebo-controlled study. J Clin Anesth. 2000;12(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  96. Elia N, Tramer MR. Ketamine and postoperative pain—a quantitative systematic review of randomised trials. Pain. 2005;113(1-2):61–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Schwenk.

Ethics declarations

Conflict of Interest

Irving W. Wainer declares holding a patent assigned to U.S. Government, Department of Health and Human Services, National Institutes of Health, for which he may receive royalties.

Joseph Pergolizzi discloses the following relationships: Consultant/ Speaker, Owner, and Researcher for Spirify, US World Meds, Salix, Enalare, Scilex, Pfizer, Lilly, Teva, Taketa, Regeneron, BDSI, Bridge Therapeutics Grunenthal, and Neumentum. Specific to ketamine include present consultant to Spirify Pharma.

Marc Torjman reports a patient pending on the use of (2R,6R)-hydroxynorketamine, (S)-dehydronorketamine and other stereoisomeric dehydro- and hydroxylated metabolites of (R,S)-ketamine in the treatment of depression and neuropathic pain.

Basant Pradhan, Lucas Stolle, Eric Schwenk, Alexander Olson, Rohit Nalamasu, and Michael Cirullo declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Anesthetic Techniques in Pain Management

The original online version of this article was revised: The family name of Dr. Alexander Olson was misspelled.

Supplementary Information

ESM 1

(DOCX 26 kb)

ESM 2

(PDF 1224 kb)

ESM 3

(PDF 1899 kb)

ESM 4

(PDF 1224 kb)

ESM 5

(PDF 165 kb)

ESM 6

(PDF 1900 kb)

ESM 7

(PDF 1224 kb)

ESM 8

(PDF 1871 kb)

ESM 9

(PDF 1239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwenk, E.S., Pradhan, B., Nalamasu, R. et al. Ketamine in the Past, Present, and Future: Mechanisms, Metabolites, and Toxicity. Curr Pain Headache Rep 25, 57 (2021). https://doi.org/10.1007/s11916-021-00977-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-021-00977-w

Keywords

Navigation