Skip to main content
Log in

Gadolinium-Based Hybrid Ultra-Low-Background Material for Protecting the Darkside20k Dark Matter Detector from Background Neutrons

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

A laboratory technique was developed for obtaining an ultra-low-background hybrid material based on organic glass — polymethyl methacrylate (PMMA). 157Gd nuclei are used as an efficient absorber of thermal neutrons in the hybrid material. A uniform distribution of gadolinium in the PMMAmatrix is achieved by introducing the gadolinium in the form of a coordination compound — gadolinium acetylacetonate — into the hybrid material. A uniform gadolinium distribution was achieved in a 5 cm thick matrix of hybrid material with gadolinium mass content from 1.0 to 1.5%. It is shown that at 298 K the mechanical characteristics of the hybrid material samples coincide with nominally pure PMMA, but at 77 K the hybrid material is inferior to pure PMMA within admissible requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. P. Zykova, I. V. Stepanova, A. S. Chepurnov, and I. Kh. Avetisov, “Technology of ultra-low-background gadolinium-based preparations. Part 1. Impurity composition investigations of gadolinium-containing preparations for the determination of promising raw materials,” Tsvetn. Met., No. 11, 35 – 41 (2020).

  2. P. Agnes, L. Agostino, I. F. M. Albuquerque, et al., “The VETO system of the DarkSide-50 experiment,” J. Instrumentation, 11, 03016 (2016).

    Google Scholar 

  3. I. K. Kikoin (ed.), Tables of Physical Quantities: Reference [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  4. D. M. Poehlmann, D. Barker, H. Chagani, et al., “Characterization of gadolinium-loaded plastic scintillator for use as a neutron veto,” arXiv:1812.11267v1[physics.ins-det] [Electronic resource] (2018). URL: https://arxiv.org/abs/1812.11267v1

  5. J. Dumazert, R. Coulon, Q. Lecomte, et al., “Gadolinium for neutron detection in current nuclear instrumentation research: A review,” Nuclear Inst. Methods Phys. Res. A, 882, 53 – 68 (2018).

    Article  CAS  Google Scholar 

  6. K. Hagiwara, T. Yano, T. Tanaka, et al., “Gamma-ray spectrum from thermal neutron capture on gadolinium-157,” Progr. Theor. Exp. Phys., No. 2, 023D01 (2019).

  7. D. S. Akerib, C. W. Akerlof, S. K. Alsum, et al., “Projected WIMPsensitivity of the LUX-ZEPLIN (LZ) dark matter experiment [Electronic resource], in: Astrophysics. Instrumentation and Methods for Astrophysics, Cornell University (2019). URL: https://arxiv.org/abs/1802.06039v2

  8. E. Pruszkowski and P. E. Life, Total Quant Analysis of Teas and Wines by ICP-MS, Perkin Elmer Life and Analytical Sciences, Field Application Report, ICP Mass Spectrometry, USA(2004).

  9. D. J. Carbaugh, J. T.Wright, R. Parthib, and F. Rahman, “Photolithography with polymethyl methacrylate (PMMA),” Semicond. Sci. Technol., 31(2), 025010 (2016).

  10. D.W. Krevelen and K. Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier (2009).

  11. G. Holden, “Elastomers, thermoplastic,” in: Encyclopedia of Polymer Science and Technology, Wiley & Sons (2004), Vol. 12, pp. 63 – 88.

  12. Polymethylmethacrylate (PMMA, Acrylic). URL: https://www. makeitfrom.com_material-properties_Polymethylmethacrylate- PMMA-Acrylic (Date of access: 08.07.2020).

  13. E. A. Bratsykhin and E. S. Shulgina, Technology of Plastic Masses [in Russian], Khimiya, Leningrad (1982).

    Google Scholar 

  14. K. Binnemans, “Rare-earth beta-diketonates,” Handbook on the Physics and Chemistry of Rare Earths, 35(5), 107 – 272 (2005).

    Article  Google Scholar 

  15. V. I. Boiko, V. A. Vlasov, and I. I. Zherin, et al., Thorium in the Nuclear Fuel Cycle [in Russian], Izd. Dom Ruda i Metally, Moscow (2006).

    Google Scholar 

  16. I. I. Zherin and G. N. Amelina, Chemistry of Thorium, Uranium, Plutonium [in Russian], Izd. TPU, Tomsk (2010).

    Google Scholar 

  17. V. A. Rabinovich and Z. Ya. Khavin, Brief Chemical Handbook [in Russian], Khimiya, Leningrad (1991).

    Google Scholar 

  18. J. Katz, G. Seaborg, and L. Lorss (eds.), Chemistry of Actinides [Russian translation], Mir, Moscow (1999), Vol. 3.

  19. E. Pretsch, F. Bühlmann, and K. Affolter, Spectral Data Tables: Structure Determination of Organic Compounds [Russian translation], Binom. Knowledge Laboratory, Mir, Moscow (2006), pp. 251 – 318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kh. Avetisov.

Additional information

Translated from Steklo i Keramika, No. 3, pp. 3 – 10, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykova, M.P., Khomyakov, A.V., Grishechkin, M.B. et al. Gadolinium-Based Hybrid Ultra-Low-Background Material for Protecting the Darkside20k Dark Matter Detector from Background Neutrons. Glass Ceram 78, 91–96 (2021). https://doi.org/10.1007/s10717-021-00354-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00354-4

Key words

Navigation