Skip to main content
Log in

The structural, linear and nonlinear optical properties of high-quality Zn1-xPbxO nanostructured thin films for optoelectronic device applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this article, the authors are presented the work on the evaluation of structural and third-order nonlinear optical (NLO) properties of lead (Pb)-doped zinc oxide (ZnO) thin films. The nano structured Zn1-xPbxO thin films were lay down on the glass substrate at an heating temperature of 350 °C with different Pb-doping concentration (‘x’ ratios of 0, 0.01, 0.05 and 0.1 wt. % of Pb) using the standard spray pyrolysis technique. The powder X-ray diffraction (P-XRD) spectroscopic analysis reveals the polycrystalline existence in the lead doped thin films in evidence with the hexagonal structure. The reformed grain sizes with enhanced doping content was perceived through surface morphological analysis with the help of field emission scanning electron microscopy and are in line with the X-Ray diffraction observations. The upgraded optical band gaps (Eg) were inferred through UV–Vis spectroscopic studies for the tailored films from 3.21 eV (pure ZnO) to 3.34 eV (10 wt. % of Pb). The defect states appearances and photoluminescence properties are discussed for the fabricated thin films using the resulted room temperature photoluminescence (RTPL) spectroscopic data. The third-order NLO parameters were calculated by potentially exposing the prepared thin films to the z-scan analysis under a continuous wave solid state laser at an excitation wavelength of 532 nm. The reverse saturable absorption, excited state absorption and self-defocusing effects were observed from the z-scan test along with the elevated nonlinear absorption coefficient (β) from 4.74 × 10–4 to 1.05 × 10–3 (cm/W) and negative nonlinear refractive index \({(n}_{2}\)) from 1.42 × 10–8 to 5.60 × 10–8 (cm2W−1). In addition to this, the third-order NLO susceptibility (χ (3)) values are also calculated and are augmented from 0.82 × 10–5 to 1.45 × 10–4 (esu). An optical limiting (OL) topography with the limiting thresholds was also explored at the experimental wavelength. Hence, the outcome of structural, linear and nonlinear optical studies acknowledged the ability of the Zn1-xPbxO thin films in the field of optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References:

  1. X.G. Mbuyise, E.A.A. Arbab, K. Kaviyarasu, G. Pellicane, M. Maaza, Genene tessema mola. J. Alloys Compound 2, 249 (2017)

    Google Scholar 

  2. H. Zhang, H. Liu, C. Lei et al., J Semicond 31(8), 083005 (2010)

    Article  Google Scholar 

  3. G. Rusu, V. Ciupina, M. Popa, G. Prodan, G. Rusu, C. Baban, J. Non-Cryst, Solids 352, 1525–1528 (2006)

    Google Scholar 

  4. A.A. Elhadi, Arbab genene tessema mola. Appl. Phys. A 122, 405 (2016)

    Article  Google Scholar 

  5. T. Minami, Semicond. Sci. Technol. 20(4), S35 (2005)

    Article  ADS  Google Scholar 

  6. A. Hafdallah, F. Ynineb, M.S. Aida, N. Attaf, J. Alloys Compound 509(26), 7267–7270 (2011)

    Article  Google Scholar 

  7. R. Bairy, P.S. Patil, R. Shivaraj, H.M. Vijeth, M.S. Murari, K. Udaya, K. Bhat, RSC Adv. 9, 22302 (2019)

    Article  ADS  Google Scholar 

  8. MichelCastagne MejdaAjili, N. KamounTurki, Superlattices Microstruct. 53, 213–222 (2013)

    Article  Google Scholar 

  9. F. Maldonado, A. Stashans, J. Phys. Chem. Solids 71(5), 784–787 (2010)

    Article  ADS  Google Scholar 

  10. F. Boudjouan, C. Azeddine, T. Touam, D. Djouadi, Y. Ouerdane, Mater Sci Semiconduct Proc, 41, 382–389 (2016).

  11. B. Sahoo, D. Behera, S.K. Pradhan, D.K. Mishra, S.K. Sahoo, R.R. Nayak, K.P.C. Sekhar, Mater Res. Express 6, 11506 (2019)

    Article  Google Scholar 

  12. J.B. Franklin, B. Zou, P. Petrov, D.W. McComb, M.P. Ryan, M.A. McLachlan, J. Mater. Chem. 21, 8178 (2011)

    Article  Google Scholar 

  13. ZhengweiLi WeiGao, Ceram. Int. 30(7), 1155–1159 (2004)

    Article  Google Scholar 

  14. P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, Internat. J. Modern Sci. 1(3), 159–165 (2015)

    Google Scholar 

  15. Ke. Sun, W. Wei, Y. Ding, Yi. Jing, Z.L. Wang, D. Wang, Chem. Commun. 47, 7776–7778 (2011)

    Article  Google Scholar 

  16. N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, Curr. Appl. Phys. 12(5), 1283–1287 (2012)

    Article  ADS  Google Scholar 

  17. L. Znaidi, Mater. Sci Eng: B 174(25), 18–30 (2010)

    Article  Google Scholar 

  18. Z. Sofiani, B. Sahraoui, M. Addou, R. Adhiri, M.A. Lamrani, L. Dghoughi, N. Fellahi, B. Derkowska, W. Bala, J. Appl. Phys. 101, 063104 (2007)

    Article  ADS  Google Scholar 

  19. K. Krunks, O. Bijakina, Phys. Scr. 79, 209–212 (1999)

    Article  Google Scholar 

  20. M. Sathya, K. Pushpanathan, Appl. Surf. Sci. 11, 127 (2017)

    Google Scholar 

  21. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  Google Scholar 

  22. C.M. Muiva, T.S. Sathiaraj, K. Maabong, Ceram. Int. 37, 555–560 (2011)

    Article  Google Scholar 

  23. G.S. Thool, A.K. Singh, R.S. Singh, A.B. HasanSusan, J. Saudi Chem. Soc. 18(5), 712–721 (2014)

    Article  Google Scholar 

  24. K. Usha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 114, 123501 (2013)

    Article  ADS  Google Scholar 

  25. B. Raghavendra, S.D. Kulkarni, M.S. Murari, K.N. Narasimhamurthy, Appl. Physics A 126, 380 (2020)

    Article  ADS  Google Scholar 

  26. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, 1974), p. 159

    Book  Google Scholar 

  27. L.-W. Lai, C.-T. Lee, Mater. Chem. Phys. 110(2–3), 393–396 (2008)

    Article  Google Scholar 

  28. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, Parutagouda shankaragouda patil. Phys. B Condens. Matter 555, 145–151 (2019)

    Article  ADS  Google Scholar 

  29. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971)

    Google Scholar 

  30. D. Auvergne, J. Camassel, H. Mathieu, Phys. Rev. B 11, 2251 (1975)

    Article  ADS  Google Scholar 

  31. M. Ghosh, A.K. Raychaudhuri, J. Appl. Phys. 100, 034315 (2006)

    Article  ADS  Google Scholar 

  32. D.C. Reynolds, D.C. Look, B. Jogai, J. Appl. Phys. 89, 6189 (2001)

    Article  ADS  Google Scholar 

  33. N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, R. Poonguzhali, Curr. Appl. Phys. 14, 1760 (2014)

    Article  ADS  Google Scholar 

  34. H.S. Bhatti, D. Kumar, K. Singh, P. Sharma, A. Gupta, R. Sharma, Asian J. Chem. 18, 3301–3305 (2006)

    Google Scholar 

  35. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagen, E.W. Van Stryland, IEEE J. Quant. Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  36. M. Sheik-Bahae, D.C. Hutchings, D.C. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991)

    Article  ADS  Google Scholar 

  37. R. Bairy, A. Jayarama, G.K. Shivakumar, K. Radhakrishnan, U.K. Bhat, J. Mater. Sci. Mater. Electron. 30, 6993–7004 (2020)

    Article  Google Scholar 

  38. M. Shkir, M.T. Khan, V. Ganesh, I.S. Yahia, A. Bakhtiar, P.S. Almohammedi, S. Patil, Opt. Laser Techn. 108, 609 (2018)

    Article  ADS  Google Scholar 

  39. R. Bairy, A. Jayarama, S.D. Kulkarni, M.S. Murari, H. Vijeth, Mater Sci Semiconduct Proc 121, 105400 (2021)

    Article  Google Scholar 

  40. S. Thongrattanasiri, F.H.L. Koppens, F.J. Garcia, Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  41. R. Bairy, A. Jayarama, S.D. Kulkarni, M.S. Murari, H. Vijeth, Mater. Res. Express 6(09), 6447 (2019)

    Google Scholar 

  42. B. Raghavendra, D.K. Suresh, M.S. Murari, Optics Laser Technol. 126, 106113 (2020)

    Article  Google Scholar 

  43. N. Venkatram, D. Narayana Rao, M.A. Akundi, Opt. Express 13, 867 (2005)

    Article  ADS  Google Scholar 

  44. U.P. Shaik, P. Ajay Kumar, M.G. Krishna, S. Venugopal Rao, Mater Res. Express 1, 046201 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Dr. R. Bairy would like to acknowledge N.M.A.M.I.T. Nitte, India for providing all the research facilities and support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Bairy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairy, R., Haleshappa, D. & Murari, M.S. The structural, linear and nonlinear optical properties of high-quality Zn1-xPbxO nanostructured thin films for optoelectronic device applications. Appl. Phys. B 127, 113 (2021). https://doi.org/10.1007/s00340-021-07659-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07659-w

Navigation