Skip to main content
Log in

Quantum Parity Conservation in Planar Quantum Electrodynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum parity conservation is verified at all orders in perturbation theory for a massless parity-even U(1) × U(1) planar quantum electrodynamics (QED3) model. The presence of two massless fermions requires the Lowenstein-Zimmermann (LZ) subtraction scheme, in the framework of the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method, in order to subtract the infrared divergences induced by the ultraviolet subtractions at 1- and 2-loops, however thanks to the superrenormalizability of the model the ultraviolet divergences are bounded up to 2-loops. Finally, it is proved that the BPHZL renormalization method preserves parity for the model taken into consideration, contrary to what happens to the ordinary massless parity-even U(1) QED3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In perturbation theory, the proof on the absence of a parity anomaly in massless U(1) QED3 has also been performed by the Epstein-Glaser renormalization method [29].

  2. A quantum electrodynamics model describing electron-polaron–electron-polaron scattering and four-fold broken degeneracy of the Landau levels in pristine graphene.

  3. It is appropriated to stress that neither the ghosts (c and ξ) nor the antighosts (\(\overline {c}\) and \(\overline {\xi }\)) take part of vacuum-polarization tensor, self energy or vertex function Feynman diagrams at any perturbative order, since they are free quantum fields, thus they decouple.

  4. It should be pointed that, for the sake of subsequent renormalization, the symmetrical diagrams corresponding to \(\gamma _{11_{\pm }}\), \(\gamma _{12_{\pm }}\) and \(\gamma _{13_{\pm }}\) – those with the propagators \({\Delta }^{\mu \nu }_{AA}\), \({\Delta }^{\mu \nu }_{AA}\) or \({\Delta }^{\mu \nu }_{AA}\) inside the loop in its upper part – have to be taken into consideration.

  5. As already mentioned, since possible parity-even local counterterm of the type 𝜖μανAμpαaν has not been taken into consideration, it remains sixteen graphs that could generate parity-odd-like counterterms 𝜖μανAμpαAν and 𝜖μανaμpαaν.

  6. The explicitly BPHZL renormalization and the calculations of all counterterms at 1- and 2-loops, whether parity-even or -odd, are left to another work [44], since the purpose of this one was to verify if the LZ subtraction scheme in the framework of the BPHZ renormalization method would preserve or not parity symmetry.

References

  1. Schonfeld, J.F.: . Nucl. Phys. B185, 157 (1981)

    Article  ADS  Google Scholar 

  2. Jackiw, R., Templeton, S.: . Phys. Rev. D23, 2291 (1981)

    ADS  Google Scholar 

  3. Deser, S., Jackiw, R., Templeton, S.: . Ann. Phys. (NY) 140, 372 (1982)

    Article  ADS  Google Scholar 

  4. Deser, S., Jackiw, R., Templeton, S.: . Phys. Rev. Lett. 48, 975 (1982)

    Article  ADS  Google Scholar 

  5. Deser, S., Jackiw, R., Templeton, S.: . Ann. Phys. (NY) 281, 409 (2000)

    Article  ADS  Google Scholar 

  6. Franz, M., Tešanović, Z., Vafek, O.: . Phys. Rev. B66, 054535 (2002)

    Article  ADS  Google Scholar 

  7. Herbut, I.F.: . Phys. Rev. B66, 094504 (2002)

    Article  ADS  Google Scholar 

  8. Christiansen, H.R., Del Cima, O.M., Ferreira, M.M. Jr, Helayël-Neto, J.A.: . Int. J. Mod. Phys. A18, 725 (2003)

    Article  ADS  Google Scholar 

  9. Laughlin, R.B.: . Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  10. Schakel, A.M.J.: . Phys. Rev. d43, 1428 (1991)

    ADS  Google Scholar 

  11. Raya, A., Reyes, E.D.: . J. Phys. A. Math. Theor. 41, 355401 (2008)

    Article  Google Scholar 

  12. Gusynin, V.P., Miransky, V.A., Shovkovy, I.A.: . Phys. Rev. Lett. 73, 3499 (1994)

    Article  ADS  Google Scholar 

  13. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: . Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  14. Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: . Int. J. Mod. Phys. B21, 4611 (2007)

    Article  ADS  Google Scholar 

  15. Jackiw, R., Pi, S.-Y.: . Phys. Rev. Lett. 98, 266402 (2007)

    Article  ADS  Google Scholar 

  16. Katsnelson, M.I., Novoselov, K.S.: . Solid State Comm. 143, 3 (2007)

    Article  ADS  Google Scholar 

  17. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: . Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  18. Abreu, E.M.C., De Andrade, M.A., De Assis, L.P.G., Helayël-Neto, J.A., Nogueira, A.L.M.A., Paschoal, R.C.: . J. High Energy Phys. 1105, 001 (2011)

    Article  ADS  Google Scholar 

  19. Fialkovsky I., Vassilevich, D.V.: . Eur. Phys. J. B85, 384 (2012)

    Article  ADS  Google Scholar 

  20. Del Cima, O.M., Miranda, E.S.: . Eur. Phys. J. B91, 212 (2018)

    Article  ADS  Google Scholar 

  21. Hasan, M.Z., Kane, C.L.: . Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  22. Kane, C.L., Moore, J.E.: . Phys. World 24, 32 (2011)

    Article  Google Scholar 

  23. Fonseca, J.M., Moura-Melo, W.A., Pereira, A.R.: . J. Appl. Phys. 111, 064913 (2012)

    Article  ADS  Google Scholar 

  24. Leijnse, M., Flensberg, K.: . Semicond. Sci. Technol. 27, 124003 (2012)

    Article  ADS  Google Scholar 

  25. Yonezawa, S.: . AAPPS Bull. 26(3), 3 (2016). arXiv:1604.07930v3

    Google Scholar 

  26. Sato, M., Ando, Y.: . Rep. Prog. Phys. 80, 076501 (2017)

    Article  ADS  Google Scholar 

  27. Del Cima, O.M., Franco, D.H.T., Piguet, O.: . Phys. Rev. D89, 065001 (2014)

    ADS  Google Scholar 

  28. Del Cima, O.M., Franco, D.H.T., Piguet, O., Schweda, M.: . Phys. Lett. B680, 108 (2009)

    Article  ADS  Google Scholar 

  29. De Moura, P.H., Del Cima, O.M., Franco, D.H.T., Lima, L.S., Miranda, E.S.: No parity anomaly in massless QED3: an Epstein-Glaser approach”, in preparation (2020)

  30. De Lima, W.B., Del Cima, O.M., Miranda, E.S.: . Eur. Phys. J. B93, 187 (2020)

    Article  ADS  Google Scholar 

  31. Zimmermann, W.: . Comm. Math. Phys. 15, 208 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zimmermann, W. In: Deser, S., Grisaru, M., Pendleton, H (eds.) : Lectures on elementary particles and quantum field theory, 1970 Brandeis Lectures. MIT Press, Cambridge (1971)

  33. Lowenstein, J.H.: . Comm. Math. Phys. 47, 53 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lowenstein, J.H., Zimmermann, W.: . Nucl.Phys. B86, 77 (1975)

    Article  ADS  Google Scholar 

  35. Lowenstein, J.H., Zimmermann, W.: . In: Velo, G., Wightman, A.S., Reidel, D. (eds.) Renormalization Theory, Dordrecht-Holland (1976)

  36. Binegar, B.: . J. Math. Phys. 23, 1511 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  37. Nakanishi, N.: . Progr. Theor. Phys. 35, 1111 (1966)

    Article  ADS  Google Scholar 

  38. Nakanishi, N.: . Progr. Theor. Phys. 37, 618 (1967)

    Article  ADS  Google Scholar 

  39. Lautrup, B.: . Mat. Fys. Medd. Dan. Vid. Selsk 35, 11 (1967)

    Google Scholar 

  40. Becchi, C., Rouet, A., Stora, R.: . Comm. Math. Phys. 42, 127 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  41. Becchi, C., Rouet, A., Stora, R.: . Ann. Phys. (N.Y.) 98, 287 (1976)

    Article  ADS  Google Scholar 

  42. Piguet, O., Rouet, A.: . Phys. Rep. 76, 1 (1981)

    Article  ADS  Google Scholar 

  43. Piguet, O., Sorella, S.P.: Algebraic Renormalization, Lecture Notes in Physics, vol. m28. Springer, Berlin (1995)

    Google Scholar 

  44. Del Cima, O.M., Franco, D.H.T., Lima, L.S., Miranda, E.S.: The BPHZL renormalization of parity-preserving massless planar quantum electrodynamics, in preparation (2020)

Download references

Acknowledgements

O.M.D.C. dedicates this work to his father (Oswaldo Del Cima, in memoriam), mother (Victoria M. Del Cima, in memoriam), daughter (Vittoria), son (Enzo) and Glaura Bensabat. CAPES-Brazil is acknowledged for invaluable financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Del Cima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Cima, O.M., Franco, D.H.T., Lima, L.S. et al. Quantum Parity Conservation in Planar Quantum Electrodynamics. Int J Theor Phys 60, 3063–3075 (2021). https://doi.org/10.1007/s10773-021-04851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04851-8

Keywords

Navigation