Skip to main content
Log in

Jitter modulation by photon wavelength variation in single-photon avalanche diodes (SPADs)

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, jitter modulation of SPADs in different photon wavelengths is explored. It is shown that in p+/n-well, or p+/deep n-well SPADs the jitter increases with increasing the photon wavelength, due to an increase in avalanche buildup time (τ). The avalanche buildup time is enhanced in higher wavelength due to the deeper photon absorption depth, and lower avalanche probability in deeper depths in p+/n-well or p+/deep n-well structures, which itself enhances the SPAD jitter. The finding of this paper could successfully describe the two previously implemented SPAD jitter measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

The code that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Assanelli, M., Ingargiola, A., Rech, I., Gulinatti, A., Ghioni, M.: Photon-timing jitter dependence on injection position in single-photon avalanche diodes. IEEE J. Quantum Electron. 47(2), 151–159 (2011)

    Article  ADS  Google Scholar 

  • Aull, B.F., Loomis, A.H., Young, D.J., Heinrichs, R.M., Felton, B.J., Daniels, P.J., Landers, D.J.: Geiger-mode avalanche photodiodes for three-dimensional imaging. Lincoln Lab. J. 13(2), 335–349 (2002)

    Google Scholar 

  • Bronzi, D., Villa, F., Tisa, S., Tosi, A., Zappa, F.: SPAD Figures of merit for photon-counting, photon-timing, and imaging applications: a review. IEEE Sens. J. 16(1), 3–12 (2015)

    Article  ADS  Google Scholar 

  • Daube-Witherspoon, M.E., Matej, S., Werner, M.E., Surti, S., Karp, J.S.: Comparison of list-mode and DIRECT approaches for time-of-flight PET reconstruction. IEEE Trans. Med. Imaging 31(7), 1461–1471 (2012)

    Article  Google Scholar 

  • Green, M.A.: Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008)

    Article  Google Scholar 

  • Gulinatti, A., Rech, I., Fumagalli, S., Assanelli, M., Ghioni, M., Cova, S.: Modeling Photon Detection Efficiency and Temporal Response of Single Photon Avalanche Diodes, vol. 7355. SPIE SPIE Optics + Optoelectronics (2009a)

    Google Scholar 

  • Gulinatti, A., Rech, I., Fumagalli, S., Assanelli, M., Ghioni, M., Cova, S.D.: Modeling photon detection efficiency and temporal response of single photon avalanche diodes. In: Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing II 2009b, p. 73550X. International Society for Optics and Photonics

  • Ingargiola, A., Assanelli, M., Gallivanoni, A., Rech, I., Ghioni, M., Cova, S.: Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field. In: Advanced Photon Counting Techniques III 2009, p. 73200K. International Society for Optics and Photonics

  • Kaneda, T., Takanashi, H.: Avalanche buildup time of silicon avalanche photodiodes. Appl. Phys. Lett. 26(11), 642–644 (1975)

    Article  ADS  Google Scholar 

  • Karami, M.A.: Deep-submicron CMOS single photon detectors and quantum effects, doctoral thesis, Delft University of Technology, Delft. (2011). http://resolver.tudelft.nl/uuid:59a5b9f0-9fc9-41e3-872b-4db378a90c19

  • Karami, M.A., Amiri-Sani, A., Ghormishi, M.H.: Tunneling in submicron CMOS single-photon avalanche diodes. Chin. Opt. Lett. 12(1), 012501 (2014)

    Article  ADS  Google Scholar 

  • Kuvås, R., Lee, C.: Quasistatic approximation for semiconductor avalanches. J. Appl. Phys. 41(4), 1743–1755 (1970)

    Article  ADS  Google Scholar 

  • Malass, I., Uhring, W., Le Normand, J.-P., Dumas, N., Dadouche, F.: A single photon avalanche detector in a 180 nm standard CMOS technology. In: 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS) 2015, pp. 1–4. IEEE

  • McIntyre, R.: Factors affecting the ultimate capabilities of high speed avalanche photodiodes and a review of the state-of-the-art. In: 1973 International Electron Devices Meeting 1973, pp. 213–216. IEEE

  • Melchior, H., Lynch, W.: Signal and noise response of high speed germanium avalanche photodiodes. IEEE Trans. Electron Dev. 13(12), 829–838 (1966)

    Article  ADS  Google Scholar 

  • Pancheri, L., Stoppa, D.: Low-noise single photon avalanche diodes in 0.15 μm CMOS technology. In: 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC) 2011, pp. 179–182. IEEE

  • Pancheri, L., Stoppa, D., Dalla Betta, G.-F.: Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs. IEEE J. Sel. Top. Quantum Electron. 20(6), 328–335 (2014)

    Article  ADS  Google Scholar 

  • Saleh, B.E., Teich, M.C.: Fundamentals of Photonics. Wiley (2019)

    Google Scholar 

  • Spinelli, A., Lacaita, A.L.: Physics and numerical simulation of single photon avalanche diodes. IEEE Trans. Electron Devices 44(11), 1931–1943 (1997)

    Article  ADS  Google Scholar 

  • Silvaco Inc: Atlas User’s Manual, 25, (2019). http://www.silvaco.com

  • Sun, F.-Y., Zhong, W., Yue, X.: Modeling of timing jitter for single-photon avalanche diodes. DEStech Trans. Compu. Sci. Eng.  International Conference on Modeling, Simulation and Analysis (icmsa), Wuhan, China, 7-8 February (2018). https://doi.org/10.12783/dtcse/icmsa2018/23212

  • Sun, F., Xu, Y., Wu, Z., Zhang, J.: A simple analytic modeling method for SPAD timing jitter prediction. IEEE J. Electron Dev. Soc. 7, 261–267 (2019)

    Article  Google Scholar 

  • Veerappan, C., Charbon, E.: A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk. IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014)

    Article  ADS  Google Scholar 

  • Villa, F., Bronzi, D., Zou, Y., Scarcella, C., Boso, G., Tisa, S., Tosi, A., Zappa, F., Durini, D., Weyers, S.: CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm. J. Mod. Opt. 61(2), 102–115 (2014)

    Article  ADS  Google Scholar 

  • Vitali, M., Bronzi, D., Krmpot, A.J., Nikolić, S.N., Schmitt, F.-J., Junghans, C., Tisa, S., Friedrich, T., Vukojević, V., Terenius, L.: A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy. IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014)

    Article  ADS  Google Scholar 

  • Xu, Y., Xiang, P., Xie, X., Huang, Y.: A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors. Semicond. Sci. Technol. 31(6), 065024 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azim Karami.

Ethics declarations

Conflicts of interest

The authors verify not to have any conflict in interest with the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaee, F., Haddadifam, T. & Karami, M.A. Jitter modulation by photon wavelength variation in single-photon avalanche diodes (SPADs). Opt Quant Electron 53, 397 (2021). https://doi.org/10.1007/s11082-021-02991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02991-z

Keywords

Navigation