Skip to main content

Advertisement

Log in

A Markovian Stackelberg game approach for computing an optimal dynamic mechanism

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a dynamic Bayesian–Stackelberg incentive-compatible mechanism, in which multiple agents observe private information and learn their behavior through a sequence of interactions in a repeated game, for a class of controllable homogeneous Markov games. We assume that the leaders can ex ante commit to their disclosure strategy and mechanism, and affect followers’ actions. Along the paper, leaders possess and benefit from some commitment leadership, which describes the distinctive nature of a Stackelberg game. In this dynamics, leaders and followers together are in a Stackelberg game where actions are taken in a sequential way in the two layers of the hierarchy, but independently leaders and followers are involved non-cooperativelyin two (Nash) games where actions are taken simultaneously. This game considers an ex-ante incentive-compatible mechanism, which in equilibrium maximizes the reward while the agents are learning their actions over a countable number of periods. The formulation of the problem considers a Bayesian–Stackelberg equilibrium in the context of Reinforcement Learning. We propose an algorithm supported by the extraproximal method and show that it converges. The Tikhonov’s regularization technique is employed for ensuring the existence and uniqueness of the Bayesian–Stackelberg equilibrium. We show and guarantee the convergence of the method to a single incentive-compatible mechanism. We derive the analytical expressions for computing the mechanism in a Stackelberg game, which is one of the main results of this work. We demonstrate the efficiency of the method by an experiment drawn from an electric power problem represented by an oligopolistic market structure dominated by a small number of large sellers (oligopolists).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that Eq. (16) is the regularized version of Eq. (15), which is a result of applying the Lagrange method over Eq. (14).

References

  • Antipin AS (2005) An extraproximal method for solving equilibrium programming problems and games. Computational Mathematics and Mathematical Physics 45(11), 1893–1914

    MathSciNet  Google Scholar 

  • Asiain E, Clempner JB, Poznyak AS (2019) Controller exploitation-exploration: A reinforcement learning architecture. Soft Comput 23(11):3591–3604

    Article  Google Scholar 

  • Athey S, Segal I (2013) An efficient dynamic mechanism. Econometrica 81(6), 2463–2485

    Article  MathSciNet  Google Scholar 

  • Baron D, Besanko D (1984) Regulation and information in a continuing relationship. Information Economics and Policy 1:447–470

    Article  Google Scholar 

  • Battaglini M (2005) Long-term contracting with Markovian consumers. Am Econ Rev 95(3):637–658

    Article  Google Scholar 

  • Bergemann D, Said M (2011) Wiley Encyclopedia Of Operations Research And Management Science. Wiley, Hoboken, pp 1511–1522

    Google Scholar 

  • Bergemann D, Välimäki J (2008) New Palgrave Dictionary of Economics. Palgrave Macmillan, chap Bandit Problems, New York, pp 336–340

    Book  Google Scholar 

  • Bergemann D, Välimäki J (2010) The dynamic pivot mechanism. Econometrica 78(2), 771–789

    Article  MathSciNet  Google Scholar 

  • Berry CA, Hobbs BF, Meroney WA, O’Neill RP, Stewart WR Jr (1999) Understanding how market power can arise in network competition: a game theoretic approach. Utili Policy 8:139–158

  • Besanko D (1985) Multiperiod contracts between principal and agent with adverse selection. Economics Letters 17:33–37

    Article  Google Scholar 

  • Board S (2007) Selling options”, journal of economic theory. Journal of Economic Theory 136:324–340.

    Article  MathSciNet  Google Scholar 

  • Board S, Skrzypacz A (2016) Revenue management with forward-looking buyers forward-looking buyers. Journal of Political Economy. 124(4):1046–1087

    Article  Google Scholar 

  • Clempner JB, Poznyak AS (2016a) Analyzing an optimistic attitude for the leader firm in duopoly models: A strong stackelberg equilibrium based on a lyapunov game theory approach. Economic Computation & Economic Cybernetics Studies & Research 50(4):41–60

    Google Scholar 

  • Clempner JB, Poznyak AS (2016b) Convergence analysis for pure stationary strategies in repeated potential games: nash, lyapunov and correlated equilibria. Expert Syst Appl 46:474–484

    Article  Google Scholar 

  • Clempner JB, Poznyak AS (2018a) A tikhonov regularization parameter approach for solving lagrange constrained optimization problems. Eng Optim 50(11):1996–2012

    Article  MathSciNet  Google Scholar 

  • Clempner JB, Poznyak AS (2018b) A tikhonov regularized penalty function approach for solving polylinear programming problems. J Comput Appl Math 328:267–286

    Article  MathSciNet  Google Scholar 

  • Clempner JB, Poznyak AS (2019a) Observer and control design in partially observable finite Markov chains. Automatica (To be publushed)

  • Clempner JB, Poznyak AS (2019b) Observer and control design in partially observable finite markov chains. Automatica 110:110

    Article  MathSciNet  Google Scholar 

  • Clempner JB, Poznyak AS (2020) A nucleus for bayesian partially observable markov games: Joint observer and mechanism design. Engineering Applications of Artificial Intelligence 95:103876

    Article  Google Scholar 

  • Clempner JB, Poznyak AS (2021) Analytical method for mechanism design in partiallyobservable markov games. Mathematics (To be published)

  • Courty P, Li H (2000) Sequential screening. Review of Economic Studies 67:697–717

    Article  MathSciNet  Google Scholar 

  • Esö P, Szentes B (2007) Optimal information disclosure in auctions and the handicap auction. Review of Economic Studies 74(3), 705–731

    Article  MathSciNet  Google Scholar 

  • Garg D, Narahari Y (2008) Mechanism design for single leader stackelberg problems and application to procurement auction design. IEEE Transactions On Automation Science And Engineering 5(3):377–393

    Article  Google Scholar 

  • Gershkov A, Moldovanu B (2009) Dynamic revenue maximization with heterogenous objects: A mechanism design approach. American Economic Journal: Microeconomics 1(2):168–198

    Article  Google Scholar 

  • Golosov M, Skreta V, Tsyvinski A, Wilson A (2014) Dynamic strategic information transmission. Journal of Economic Theory 151:304–341

    Article  MathSciNet  Google Scholar 

  • Hartline JD, Lucier B (2015) Non-optimal mechanism design. American Economic Review 105(10):3102–3124

    Article  Google Scholar 

  • Hobbs B, Metzler C, Pang J (2000) Strategic gaming analysis for electric power networks: an mpec approach. IEEE Trans Power Syst 15:638–645

    Article  Google Scholar 

  • Hu M, Fukushima M (2011) Variational inequality formulation of a class of multi-leader-follower games. Journal of Optimization Theory and Applications 151:455–473

    Article  MathSciNet  Google Scholar 

  • Hurwicz L (1960) Optimality and informational efficiency in resource allocation processes. In: Arrow KJ, Karlin S, Suppes P (eds) Mathematical methods in the social sciences. Stanford University Press, California, pp 27–46

    Google Scholar 

  • Kakade S, Lobel I, Nazerzadeh H (2013) Optimal dynamic mechanism design and the virtual-pivot mechanism. Operations Research 61(4), 837–854

    Article  MathSciNet  Google Scholar 

  • Myerson RB (1983) Mechanism design by an informed principal. Econometrica 51(6), 1767–1797

    Article  MathSciNet  Google Scholar 

  • Myerson RB (1989) Allocation, information and markets, The New Palgrave. Palgrave Macmillan, London, pp 191–206

    Book  Google Scholar 

  • Pang J, Fukushima M (2005) Quasi-variational inequalities, generalized nash equilibria, and multileader-follower games. Computational Management Science 2:21–56

    Article  Google Scholar 

  • Pavan A, Segal I, Toikka J (2014) Dynamic mechanism design: A myersonian approach. Econometrica 82(2):601–653

    Article  MathSciNet  Google Scholar 

  • Saari DG (1988) On the types of information and mechanism design. Journal of Computational and Applied Mathematics 22(2–3), 231–242

    Article  MathSciNet  Google Scholar 

  • Solis C, Clempner JB, Poznyak AS (2019) Robust extremum seeking for a second order uncertain plant using a sliding mode controller. International Journal of Applied Mathematics and Computer Science 29(4), 703–712

    Article  MathSciNet  Google Scholar 

  • Trejo KK, Clempner JB, Poznyak AS (2015a) Computing the stackelberg/nash equilibria using the extraproximal method: Convergence analysis and implementation details for markov chains games. Int J Appl Math Comput Sci 25(2):337–351

    Article  MathSciNet  Google Scholar 

  • Trejo KK, Clempner JB, Poznyak AS (2015b) A stackelberg security game with random strategies based on the extraproximal theoretic approach. Eng Appl Artif Intell 37:145–153

    Article  Google Scholar 

  • Wang X, Chin KS, Yin H (2011) Design of optimal double auction mechanism with multi-objectives. Expert Systems with Applications 38:13749–13756

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio B. Clempner.

Additional information

Communicated by Jorge Zubelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Theorem 2

A Proof of Theorem 2

.

Following (Antipin 2005; Trejo et al. 2015a), let us consider \(\eta =\gamma , \text { } z={\tilde{w}},\text { }x= {\tilde{v}}_{n}\) and \(z^{*} =\hat{v}_{n}\)

$$\begin{aligned} \begin{array}{c} r(z)={\mathcal {L}}_{\delta }({\tilde{w}},{\tilde{v}}_{n}), \text { } r(z^{*})={\mathcal {L}}_{\delta }(\hat{v}_{n} ,{\tilde{v}}_{n}) \end{array} \end{aligned}$$

we obtain

$$\begin{aligned} \begin{array}{c} \dfrac{1}{2}\Vert \hat{v}_{n} -{\widetilde{v}}_{n} \Vert ^{2} +\gamma {\mathcal {L}}_{\delta } (\hat{v}_{n},{\tilde{v}}_{n} )\le \dfrac{1}{2} \Vert {\tilde{w}}-{\tilde{v}}_{n}\Vert ^{2} + \gamma {\mathcal {L}}_{\delta }({\tilde{w}},{\tilde{v}}_{n} )-\dfrac{1}{2} \Vert {\tilde{w}}-\hat{v}_{n}\Vert ^{2} \end{array} \end{aligned}$$
(34)

Now, considering \(\eta =\gamma , \small z={\tilde{w}},\text { }x={\tilde{v}}_{n}\) and \( z^{*}={\tilde{v}}_{n+1}\)

$$\begin{aligned} \begin{array}{c} r(z)={\mathcal {L}}_{\delta }({\tilde{w}},\hat{v}_{n} ),\text { } r(z^{*})={\mathcal {L}}_{\delta } ({\tilde{v}}_{n+1},\hat{v}_{n}) \end{array} \end{aligned}$$

we obtain

$$\begin{aligned} \begin{array}{c} \dfrac{1}{2}\Vert {\tilde{v}}_{n+1} -{\tilde{v}}_{n}\Vert ^{2}+\gamma {\mathcal {L}}_{\delta } ({\tilde{v}}_{n+1},\hat{v}_{n} )\le \dfrac{1}{2} \Vert {\tilde{w}}-{\tilde{v}}_{n} \Vert ^{2} +\gamma {\mathcal {L}}_{\delta } ({\tilde{w}},\hat{v}_{n} )-\dfrac{1}{2} \Vert {\tilde{w}}-{\tilde{v}}_{n+1} \Vert ^{2} \end{array} \quad \end{aligned}$$
(35)

Choosing \({{\tilde{w}}}={\tilde{v}}_{n+1}\) in (34) and \({{\tilde{w}} }= \hat{v}_{n}\) in (35) we obtain

$$\begin{aligned}&\begin{array}{c} \dfrac{1}{2}\Vert \hat{v}_{n}-{\tilde{v}}_{n} \Vert ^{2} +\gamma {\mathcal {L}}_{\delta } (\hat{v}_{n},{\tilde{v}}_{n})\le \dfrac{1}{2} \Vert {\tilde{v}}_{n+1}-{\tilde{v}}_{n} \Vert ^{2}+ \gamma {\mathcal {L}}_{\delta }({\tilde{v}}_{n+1},{\tilde{v}}_{n} )-\dfrac{1}{2} \Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert ^{2} \end{array} \nonumber \\\end{aligned}$$
(36)
$$\begin{aligned}&\begin{array}{c} \dfrac{1}{2}\Vert {\tilde{v}}_{n+1} -{\tilde{v}}_{n}\Vert ^{2}+ \gamma {\mathcal {L}}_{\delta } ({\tilde{v}}_{n+1},\hat{v}_{n}) \le \dfrac{1}{2} \Vert \hat{v}_{n}-{\tilde{v}}_{n} \Vert ^{2} +\gamma {\mathcal {L}}_{\delta } (\hat{v}_{n},\hat{v}_{n}) -\dfrac{1}{2} \Vert \hat{v}_{n} -{\tilde{v}}_{n+1} \Vert ^{2} \end{array} \nonumber \\ \end{aligned}$$
(37)

Adding (36) with (37) and considering \( {\tilde{w}}+h={\tilde{v}}_{n+1}\text { }{\tilde{w}}=\hat{v}_{n},\text { }{\tilde{v}}+q={\tilde{v}}_{n},\text { }{\tilde{v}}=\hat{ v}_{n}, h={\tilde{v}}_{n+1}-\hat{v}_{n}\) and \(q={\tilde{v}}_{n} -\hat{v}_{n}\) then, we have

$$\begin{aligned} \begin{array}{l} \Vert {\tilde{v}}_{n+1}-\hat{v}_{n}\Vert ^{2}\le \gamma [{\mathcal {L}}_{\delta }({\tilde{v}}_{n+1},{\tilde{v}}_{n} )-{\mathcal {L}}_{\delta } (\hat{v}_{n},{\tilde{v}}_{n} )] \\ \quad -\gamma [{\mathcal {L}}_{\delta }({\tilde{v}}_{n+1} , \hat{v}_{n})-{\mathcal {L}}_{\delta } (\hat{v}_{n} ,\hat{v}_{n})]\le \gamma L\Vert {\tilde{v}} _{n+1}-\widehat{v}_{n} \Vert \Vert {\tilde{v}}_{n}-\hat{v}_{n} \Vert \end{array} \end{aligned}$$

which implies

$$\begin{aligned} \Vert {\tilde{v}}_{n+1}- \hat{v}_{n}\Vert \le \gamma L\Vert {\tilde{v}}_{n}- \hat{v}_{n}\Vert \end{aligned}$$
(38)

Now, considering \({\tilde{w}}={\tilde{v}}_{n+1}\) in (34) and \({\tilde{w}}= {\tilde{v}}_{\delta }^{*}\) in (35) we have

$$\begin{aligned} \begin{array}{c} \dfrac{1}{2}\Vert \hat{v}_{n}-{\tilde{v}}_{n} \Vert ^{2}+\gamma {\mathcal {L}}_{\delta }(\hat{v}_{n},{\tilde{v}}_{n} )\le \frac{1}{2} \Vert {\tilde{v}}_{n+1} -{\tilde{v}} _{n} \Vert ^{2}+ \gamma {\mathcal {L}}_{\delta }({\tilde{v}}_{n+1},{\tilde{v}}_{n})-\dfrac{1}{2}\Vert {\tilde{v}}_{n+1}-\hat{v}_{n}\Vert ^{2} \end{array} \\ \begin{array}{c} \dfrac{1}{2}\Vert {\tilde{v}}_{n+1}-{\tilde{v}}_{n}\Vert ^{2}+\gamma {\mathcal {L}}_{\delta }({\tilde{v}}_{n+1} ,\hat{v}_{n} )\le \frac{1}{2} \Vert {\tilde{v}}_{\delta }^{*} -{\tilde{v}}_{n} \Vert ^{2} + \gamma {\mathcal {L}}_{\delta }({\tilde{v}}_{\delta }^{*},\hat{v}_{n})-\frac{1}{2}\Vert {\tilde{v}}_{\delta }^{*} -{\tilde{v}}_{n+1} \Vert ^{2} \end{array} \end{aligned}$$

Adding the previous inequalities and multiplying by two we obtain

$$\begin{aligned} \begin{array}{l} \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2}+\Vert {\tilde{v}}_{n+1} -\hat{v} _{n}\Vert ^{2}+\Vert \hat{v}_{n}-{\tilde{v}}_{n}\Vert ^{2}-2\gamma {\mathcal {L}}_{\delta }({\tilde{v}}_{\delta }^{*},\hat{v}_{n})\\ \quad +2\gamma [{\mathcal {L}} _{\delta }( {\tilde{v}}_{n+1},\hat{v}_{n} ) + {\mathcal {L}}_{\delta }(\hat{v}_{n},{\tilde{v}}_{n})-{\mathcal {L}}_{\delta }({\tilde{v}}_{n+1},{\tilde{v}}_{n} )] \text { }\le \text { }\Vert {\tilde{v}}_{\delta }^{*} -{\tilde{v}}_{n}\Vert ^{2} \end{array} \end{aligned}$$

Adding and subtracting the term \({\mathcal {L}}_{\delta }(\hat{v}_{n}, \hat{v}_{n})\) we get

$$\begin{aligned} \begin{array}{l} \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2}+\Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert ^{2}+\Vert \hat{v}_{n} -{\tilde{v}}_{n} \Vert ^{2}+ 2\gamma \left[ {\mathcal {L}}_{\delta }(\hat{v}_{n},\hat{v}_{n})-{\mathcal {L}}_{\delta }({\tilde{v}}_{\delta }^{*},\hat{v}_{n})\right] \\ \quad + 2\gamma \left[ {\mathcal {L}}_{\delta }({\tilde{v}}_{n+1},\hat{v}_{n}) -{\mathcal {L}}_{\delta }(\hat{v}_{n},\hat{v}_{n})+{\mathcal {L}}_{\delta } (\hat{v}_{n}, {\tilde{v}}_{n} )-{\mathcal {L}}_{\delta }({\tilde{v}}_{n+1},{\tilde{v}}_{n} )\right] \le \text { }\Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2} \end{array} \end{aligned}$$

Considering \({\tilde{w}}+h={\tilde{v}}_{n+1}\), \({\tilde{w}}=\hat{v}_{n}\), \({\tilde{v}}+k= {\tilde{v}}_{n}\) and \({\tilde{v}}=\hat{v}_{n}\) we have \(h={\tilde{v}}_{n+1}- \hat{v}_{n}\) and \(k={\tilde{v}}_{n}-\hat{v}_{n}\), then the resulting equation is as follows

$$\begin{aligned} \begin{array}{l} \Vert {\tilde{v}}_{\delta }^{*} -{\tilde{v}}_{n+1}\Vert ^{2}+\Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert ^{2}+\Vert \hat{v}_{n}-{\tilde{v}}_{n} \Vert ^{2}+ 2\gamma \left[ {\mathcal {L}}_{\delta } (\hat{v}_{n},\hat{v}_{n})-{\mathcal {L}}_{\delta }({\tilde{v}}_{\delta }^{*},\hat{v}_{n})\right] \\ \quad - 2\gamma L\Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert \Vert {\tilde{v}}_{n} -\hat{v}_{n} \Vert \le \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2} \end{array} \end{aligned}$$

Using Eq. (38) in the last term on the left-hand side and given the strict convexity of \( {\mathcal {L}}_{\delta }\) where

$$\begin{aligned} {\mathcal {L}}_{\delta }(\hat{v}_{n},\hat{v}_{n})-{\mathcal {L}}_{\delta }( {\tilde{v}}_{\delta }^{*},\hat{v}_{n})\ge \delta \Vert \hat{v}_{n} - {\tilde{v}}_{\delta }^{*}\Vert ^{2} \end{aligned}$$

we obtain

$$\begin{aligned}&\Vert {\tilde{v}}_{\delta }^{*} -{\tilde{v}}_{n+1}\Vert ^{2} +\Vert {\tilde{v}}_{n+1}-\hat{v}_{n}\Vert ^{2}+2\gamma \delta \Vert \hat{v}_{n}-{\tilde{v}}_{\delta }^{*}\Vert ^{2}\\&\qquad +\left( 1-2\gamma ^{2}L^{2}\right) \Vert {\tilde{v}}_{n} -\hat{v}_{n}\Vert ^{2} \le \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2} \end{aligned}$$

Applying the identity \(2\langle a-c,c-b\rangle = \Vert a-b\Vert ^{2}- \Vert a-c\Vert ^{2} -\Vert c-b\Vert ^{2}\) with \(a=\hat{v}_{n}\), \(b={\tilde{v}}_{\delta }^{*}\) and \(c={\tilde{v}}_{n},\) to the left-hand side of the last inequality we have

$$\begin{aligned} \begin{array}{l} \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2}+\Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert ^{2}+\left( 1-2\gamma ^{2}L^{2}\right) \Vert {\tilde{v}}_{n}-\hat{v}_{n} \Vert ^{2} + 2\gamma \delta [2\langle \hat{v}_{n}-{\tilde{v}}_{n},{\tilde{v}}_{n}-{\tilde{v}}_{\delta }^{*}\rangle ]\\ \quad +\Vert {\tilde{v}}_{n} -\hat{v}_{n}\Vert ^{2}+ \Vert {\tilde{v}}_{n}-{\tilde{v}}_{\delta }^{*} \Vert ^{2}= \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2} +\Vert {\tilde{v}}_{n+1} -\hat{v}_{n} \Vert ^{2} \\ \qquad + (1+2\gamma \delta -2\gamma ^{2}L^{2} )\Vert {\tilde{v}}_{n}-\hat{v}_{n}\Vert ^{2}\\ \quad +4\gamma \delta \langle \hat{v}_{n}-{\tilde{v}}_{n},{\tilde{v}}_{n}-{\tilde{v}}_{\delta }^{*} \rangle +2\gamma \delta \Vert {\tilde{v}}_{n}-{\tilde{v}}_{\delta }^{*}\Vert ^{2}\le \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2} \end{array} \end{aligned}$$

Let \(p=1+2 \gamma \delta -2 \gamma ^{2}L^{2}\) and considering the square form of the third and fourth terms yields

$$\begin{aligned}&\Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2}+ \Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert ^{2}+ p\Vert {\tilde{v}}_{n}-\hat{v}_{n}\Vert ^{2}+ 4\gamma \delta \langle \hat{v}_{n}-{\tilde{v}}_{n},{\tilde{v}}_{n}-{\tilde{v}}_{\delta }^{*}\rangle \\&\quad +\dfrac{(2\gamma \delta )^{2}}{p}\Vert {\tilde{v}}_{n} -{\tilde{v}}_{\delta }^{*}\Vert ^{2}-\dfrac{(2\gamma \delta )^{2}}{p}\Vert {\tilde{v}}_{n} -{\tilde{v}}_{\delta }^{*}\Vert ^{2}+ 2\gamma \delta \Vert {\tilde{v}}_{n} -{\tilde{v}}_{\delta }^{*}\Vert ^{2}\le \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2} \end{aligned}$$

and

$$\begin{aligned}&\Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2}+ \Vert {\tilde{v}}_{n+1} -\hat{v}_{n}\Vert ^{2} + \left\| \sqrt{ p}({\tilde{v}}_{n}-\hat{v}_{n})+ \frac{ 2\gamma \delta }{\sqrt{p}}({\tilde{v}}_{n}-{\tilde{v}}_{\delta }^{*})\right\| ^{2}\\&\quad \le \left( 1-2\gamma \delta +\frac{(2\gamma \delta )^{2}}{p}\right) \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2} \end{aligned}$$

considering \(k=1-2\gamma \delta +\dfrac{(2\gamma \delta )^{2}}{p}\in \left( 0,1\right) \) we have that

$$\begin{aligned} \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n+1}\Vert ^{2}\le k \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{n}\Vert ^{2}\le k^{n+1} \Vert {\tilde{v}}_{\delta }^{*}-{\tilde{v}}_{0}\Vert ^{2}\underset{n\rightarrow \infty }{\rightarrow }0. \end{aligned}$$

q.e.d..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clempner, J.B. A Markovian Stackelberg game approach for computing an optimal dynamic mechanism. Comp. Appl. Math. 40, 186 (2021). https://doi.org/10.1007/s40314-021-01578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01578-4

Keywords

Mathematics Subject Classification

Navigation