Skip to main content
Log in

Effects of Environmental Moisture and Functional Groups on the Sliding Adhesive Behaviour of Graphene Steps

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We carried out molecular dynamics simulations to study the effects of environmental moisture and functional groups on the sliding adhesive behaviour of graphene steps at the atomic scale. Environmental water plays a dual role in separating interfaces and additional passivation during the sliding process. For a diamond tip, functionalization of graphene steps exhibits different chemical properties. Hydroxyl passivation graphene step can destroy interfacial water layers due to high chemical activity and participation in forming a filter, thereby significantly enhancing interfacial contact area and interfacial bond strength. By contrast, the graphene step passivated by hydrogen atoms has less influence on the interfacial water layers, and no apparent adhesion is observed. Besides, the presence of graphene step significantly weakens the wear resistance of graphene sheets. And different environmental conditions and functional groups weaken it to various degrees. Generally speaking, the abrasion resistance of graphene sheets in a water environment is better than that in a vacuum environment. Excluding the influence of environmental moisture, wear resistance of graphene step edges with hydrogen passivation is better than that with hydroxyl passivation. This work provides new and further insights into the process and mechanism of sliding adhesive behaviour of graphene steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klemenz, A., Pastewka, L., Balakrishna, S.G., Caron, A., Bennewitz, R., Moseler, M.: Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano Lett 14, 7145–7152 (2014). https://doi.org/10.1021/nl5037403

    Article  CAS  Google Scholar 

  2. Si, C., Sun, Z., Liu, F.: Strain engineering of graphene: a review. Nanoscale 8, 3207–3217 (2016). https://doi.org/10.1039/c5nr07755a

    Article  CAS  Google Scholar 

  3. Feng, X., Kwon, S., Park, J.Y., Salmeron, M.: Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718 (2013). https://doi.org/10.1021/nn305722d

    Article  CAS  Google Scholar 

  4. Lang, H.J., Peng, Y.T., Zeng, X.Z., Cao, X.A., Liu, L., Zou, K.: Effect of relative humidity on the frictional properties of graphene at atomic-scale steps. Carbon 137, 519–526 (2018). https://doi.org/10.1016/j.carbon.2018.05.069

    Article  CAS  Google Scholar 

  5. Ye, Z.J., Otero-de-la-Roza, A., Johnson, E.R., Martini, A.: Effect of tip shape on atomic-friction at graphite step edges. Appl. Phys. Lett. 103, 030801–035069 (2013). https://doi.org/10.1063/1.4818258

    Article  CAS  Google Scholar 

  6. Gugliuzza, A., Politano, A., Drioli, E.: The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 16, 78–85 (2017). https://doi.org/10.1016/j.coche.2017.03.003

    Article  Google Scholar 

  7. Levita, G., Restuccia, P., Righi, M.C.: Graphene and MoS2 interacting with water: a comparison by ab initio calculations. Carbon 107, 878–884 (2016). https://doi.org/10.1016/j.carbon.2016.06.072

    Article  CAS  Google Scholar 

  8. Hunley, D.P., Flynn, T.J., Dodson, T., Sundararajan, A., Boland, M.J., Strachan, D.R.: Friction, adhesion, and elasticity of graphene edges. Phys. Rev. B 87, 8004 (2013). https://doi.org/10.1103/PhysRevB.87.035417

    Article  CAS  Google Scholar 

  9. Lang, H.J., Peng, Y.T., Zeng, X.Z.: Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps. Appl. Surf. Sci. 411, 261–270 (2017). https://doi.org/10.1016/j.apsusc.2017.03.188

    Article  CAS  Google Scholar 

  10. Ye, Z.J., Martini, A.: Atomic friction at exposed and buried graphite step edges: experiments and simulations. Appl. Phys. Lett. 106, 1068–3819 (2015). https://doi.org/10.1063/1.4922485

    Article  CAS  Google Scholar 

  11. Egberts, P., Liu, Z., Dong, X.Z., et al.: Environmental dependence of atomic-scale friction at graphite surface steps. Phys. Rev. B Condens. Matter Mater. Phy. (2013). https://doi.org/10.1103/PhysRevB.88.035409

    Article  Google Scholar 

  12. Lee, H., Kwon, S.: Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties. Acs Nano 9, 3814 (2015). https://doi.org/10.1021/nn506755p

    Article  CAS  Google Scholar 

  13. Tsounis, C., Lu, X., Bedford, N.M., Subhash, B., Han, Z.: Valence alignment of mixed Ni-Fe hydroxide electrocatalysts through preferential templating on graphene edges for enhanced oxygen evolution[J]. ACS Nano 14, 11327–11340 (2020). https://doi.org/10.1021/acsnano.0c03380

    Article  CAS  Google Scholar 

  14. Vasic, B., Gajic, R., Stankovic, I., et al.: Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation. Carbon: Int. J. Sponsored Am. Carbon Soc. 107, 723–732 (2016). https://doi.org/10.1016/j.carbon.2016.06.073

    Article  CAS  Google Scholar 

  15. Qi, Y.Z., Liu, J., Dong, Y.L., Feng, X.Q., Li, Q.Y.: Impacts of environments on nanoscale wear behavior of graphene: edge passivation vs. substrate pinning. Carbon 139, 59–66 (2018). https://doi.org/10.1016/j.carbon.2018.06.029

    Article  CAS  Google Scholar 

  16. Neek-Amal, M., Peeters, F.M.: Nanoindentation of a circular sheet of bilayer graphene. Phys. Rev. B: Condens. Matter 81, 235421 (2011). https://doi.org/10.1103/PhysRevB.81.235421

    Article  CAS  Google Scholar 

  17. Levita, G., Righi, M.C.: Effects of water intercalation and tribochemistry on MoS2 lubricity: an Ab initio molecular dynamics investigation. ChemPhysChem (2017). https://doi.org/10.1002/cphc.201601143

    Article  Google Scholar 

  18. Gao, G., Ca Nnara, R.J., Ca Rpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007). https://doi.org/10.1021/la062254p

    Article  CAS  Google Scholar 

  19. Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol., A: Vac., Surf. Films 31, 030801 (2013). https://doi.org/10.1116/1.4794357

    Article  CAS  Google Scholar 

  20. He, M., Szuchmacher Blum, A., Aston, D.E., Buenviaje, C., Overney, R.M., Luginbühl, R.: Critical phenomena of water bridges in nanoasperity contacts. J. Chem. Phys. 114, 1355–1360 (2001). https://doi.org/10.1063/1.1331298

    Article  CAS  Google Scholar 

  21. Kajita, S., Righi, M.C.: A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics. Carbon 103, 193–199 (2016). https://doi.org/10.1016/j.carbon.2016.02.078

    Article  CAS  Google Scholar 

  22. Restuccia, P., Ferrario, M., Righi, M.C.: Monitoring water and oxygen splitting at graphene edges and folds: insights into the lubricity of graphitic materials. Carbon 156, 93–103 (2019). https://doi.org/10.1016/j.carbon.2019.09.040

    Article  CAS  Google Scholar 

  23. Carlos, F., Sanz-Navarro, Per-Olof, De, S., et al.: Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets. J. Phys. Chem. A 112, 1392–1402 (2008). https://doi.org/10.1021/jp074806y

    Article  CAS  Google Scholar 

  24. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  25. Nielson, K.D., Duin, A.V., Oxgaard, J., Deng, W.Q., Goddard, W.A.: Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109, 493–499 (2005). https://doi.org/10.1021/jp046244d

    Article  CAS  Google Scholar 

  26. Rahaman, O., Van Duin, A.C.T., Goddard, W.A., Doren, D.J.: Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. J. Phys. Chem. B 115, 249–261 (2011). https://doi.org/10.1021/jp108642r

    Article  CAS  Google Scholar 

  27. Stoyanov, P., Chromik, R.R.: Scaling effects on materials tribology: from macro to micro scale. Materials 10, 550 (2017). https://doi.org/10.3390/ma10050550

    Article  CAS  Google Scholar 

  28. Stifter, T., Marti, O., Bhushan, B.: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Physrevb 62, 13667–13673 (2000). https://doi.org/10.1103/PhysRevB.62.13667

    Article  CAS  Google Scholar 

  29. Hasz, K., Ye, Z., Martini, A., Carpick, R.W.: Experiments and simulations of the humidity dependence of friction between nanoasperities and graphite: the role of interfacial contact quality. Phys. Rev. Mater. (2018). https://doi.org/10.1103/PhysRevMaterials.2.126001

    Article  Google Scholar 

  30. Dey, P., Saha, S.K., Chakraborty, S.: Air-water meniscus shape in superhydrophobic triangular microgroove is dictated by a critical pressure under dynamic conditions. Phys. Fluids 31, 102004 (2019). https://doi.org/10.1063/1.5119412

    Article  CAS  Google Scholar 

  31. Asay, D.B., de Boer, M.P., Kim, S.H.: Equilibrium vapor adsorption and capillary force: exact laplace-young equation solution and circular approximation approaches. J. Adhes. Sci. Technol. 24, 2363–2382 (2010). https://doi.org/10.1163/016942410X508271

    Article  CAS  Google Scholar 

  32. Xiao, X., Qian, L.: Investigation of humidity-dependent capillary force. Langmuir 16, 8153–8158 (2000). https://doi.org/10.1021/la000770o

    Article  CAS  Google Scholar 

  33. Wang, L., Duan, F.: Nanoscale wear mechanisms of few-layer graphene sheets induced by interfacial adhesion. Tribol. Int. 123, 266–272 (2018). https://doi.org/10.1016/j.triboint.2018.02.045

    Article  CAS  Google Scholar 

  34. Zheng, F., Duan, F.: Atomistic mechanism of the weakened wear resistance of few-layer graphene induced by point defects. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.01.035

    Article  Google Scholar 

  35. Debnath, S., Sengupta, A., Raghavachari, K.: Eliminating systematic errors in DFT via connectivity-based hierarchy: accurate bond dissociation energies of biodiesel methyl esters. J. Phys. Chem. A (2019). https://doi.org/10.1021/acs.jpca.9b01478

    Article  Google Scholar 

  36. Yoosefian, M., Ansarinik, Z., Etminan, N.: Density functional theory computational study on solvent effect, molecular conformations, energies and intramolecular hydrogen bond strength in different possible nano-conformers of acetaminophen. J. Mol. Liq. 213, 115–121 (2016). https://doi.org/10.1016/j.molliq.2015.10.060

    Article  CAS  Google Scholar 

  37. Bai, L., Srikanth, N., Zhao, B., Liu, B., Liu, Z., Zhou, K.: Lubrication mechanisms of graphene for DLC films scratched by a diamond tip. J. Phys. D Appl. Phys. 49, 485302 (2016). https://doi.org/10.1088/0022-3727/49/48/485302

    Article  CAS  Google Scholar 

Download references

Funding

The project is supported by the National Natural Science Foundation of China (Grant No. 51775066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Duan, F. Effects of Environmental Moisture and Functional Groups on the Sliding Adhesive Behaviour of Graphene Steps. Tribol Lett 69, 104 (2021). https://doi.org/10.1007/s11249-021-01481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01481-3

Keywords

Navigation