Skip to main content
Log in

Photoionization dynamics of Rydberg atom in a space-dependent magnetic field

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The photoionization dynamics of Rydberg hydrogen atom in a space-dependent magnetic field has been studied for the first time. Because of the non-uniform magnetic field, this system is non-integrable, and its dynamics becomes more complex than that in a uniform magnetic field. The exact analytic electron wave function can not be obtained by solving the Schrödinger equation quantum mechanically, instead, it can be constructed within the framework of the semiclassical EBKM scheme, which gives the correspondence between the quantum wave function and a family of classical electron trajectories. The observed oscillatory structures in the electron probability density distributions on the detector plane can be understood by considering the accumulated phase among different classical trajectories by which the electron moves from the atom to the detector. The calculation results suggest that the patterns of the photoionization microscopy can be modulated by changing the scaled energy, the position of the detector plane and the initial state wave function. Once the photoionization microscopy image on the detector has been measured in the experiment, it can be used to recover the angular distribution of the electron wave function. Our work provides a convincing semiclassical interpretation of the photoionization microscopy image and the underlying classical dynamics, and may guide future experimental study on the photoionization microscopy of the Rydberg atom in the non-uniform magnetic fields.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed].

References

  1. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (SpringerVerlag, New York, 1990)

    Book  Google Scholar 

  2. M.L. Du, J.B. Delos, Phys. Rev. A 38, 1896 (1988)

    Article  ADS  Google Scholar 

  3. M.L. Du, J.B. Delos, Phys. Rev. A 38, 1913 (1988)

    Article  ADS  Google Scholar 

  4. J. Gao, J.B. Delos, M. Baruch, Phys. Rev. A 46, 1449 (1992)

    Article  ADS  Google Scholar 

  5. J. Gao, J.B. Delos, M. Baruch, Phys. Rev. A 46, 1455 (1992)

    Article  ADS  Google Scholar 

  6. J.M. Mao, K.A. Rapelje, S.J. Blodgett-Ford, J.B. Delos, Phys. Rev. A 48, 2117 (1993)

    Article  ADS  Google Scholar 

  7. M. Courtney, Phys. Rev. A 51, 4558 (1995)

    Article  ADS  Google Scholar 

  8. M. Courtney, H. Jiao, N. Spellmeyer, D. Kleppner, J. Gao, J.B. Delos, Phys. Rev. Lett. 74, 1538 (1995)

    Article  ADS  Google Scholar 

  9. M. Courtney, N. Spellmeyer, H. Jiao, D. Kleppner, Phys. Rev. A 51, 3604 (1995)

    Article  ADS  Google Scholar 

  10. J. Gao, J.B. Delos, Phys. Rev. A 56, 356 (1997)

    Article  ADS  Google Scholar 

  11. A. Kips, W. Vassen, W. Hogervorst, Phys. Rev. A 59, 2948 (1999)

    Article  ADS  Google Scholar 

  12. J. Rao, D. Delande, K.T. Taylor, J. Phys. B 34, L391 (2001)

    Article  ADS  Google Scholar 

  13. S. Freund, R. Ubert, E. Flothmann, K. Welge, D.M. Wang, J.B. Delos, Phys. Rev. A 65, 053408 (2002)

    Article  ADS  Google Scholar 

  14. D.H. Wang, S.L. Ding, Phys. Rev. A 68, 023405 (2003)

    Article  ADS  Google Scholar 

  15. L.B. Zhao, J.B. Delos, Phys. Rev. A 81, 053417 (2010)

    Article  ADS  Google Scholar 

  16. Y. Demkov, V. Kondratovich, V. Ostrovskii, JETP Lett. 34, 403 (1982)

    ADS  Google Scholar 

  17. V.D. Kondratovich, V.N. Ostrovsky, J. Phys. B 17, 1981 (1984)

    Article  ADS  Google Scholar 

  18. C. Nicole, H.L. Offerhaus, M.J.J. Vrakking, F. Lepine, C. Bordas, Phys. Rev. Lett. 88, 133001 (2002)

    Article  ADS  Google Scholar 

  19. L.B. Zhao, J.B. Delos, Phys. Rev. A 81, 053418 (2010)

    Article  ADS  Google Scholar 

  20. L. Wang, H.F. Yang, X.J. Liu, H.P. Liu, M.S. Zhan, J.B. Delos, Phys. Rev. A 82, 022514 (2010)

    Article  ADS  Google Scholar 

  21. M. Deng, W. Gao, L. Rong, J.B. Delos, L. You, H.P. Liu, Phys. Rev. A 93, 063411 (2016)

    Article  ADS  Google Scholar 

  22. A.S. Stodolna, A. Rouzée, F. Lépine, S. Cohen, F. Robicheaux, A. Gijsbertsen, J.H. Jungmann, C. Bordas, M.J.J. Vrakking, Phys. Rev. Lett. 110, 213001 (2013)

    Article  ADS  Google Scholar 

  23. D.H. Wang, S.H. Cheng, Z.H. Chen, J. Electron. Spectros. Relat. Phenomena 202, 62 (2015)

    Article  Google Scholar 

  24. V.I. Osherov, V.G. Ushakov, Phys. Rev. A 90, 045401 (2014)

    Article  ADS  Google Scholar 

  25. S. Cohen, M.M. Harb, A. Ollagnier, F. Robicheaux, M.J.J. Vrakking, T. Barillot, F. Lépine, C. Bordas, Phys. Rev. Lett. 110, 183001 (2013)

    Article  ADS  Google Scholar 

  26. S. Cohen, M.M. Harb, A. Ollagnier, F. Robicheaux, M.J.J. Vrakking, T. Barillot, F. Lépine, C. Bordas, Phys. Rev. A 94, 013414 (2016)

    Article  ADS  Google Scholar 

  27. D.H. Wang, S.H. Cheng, Q. Chen, Z.H. Chen, Can. J. Phys. 94, 548 (2016)

    Article  ADS  Google Scholar 

  28. D.H. Wang, B.H. Chu, G. Zhao, Phys. Scr. 95, 105402 (2020)

    Article  ADS  Google Scholar 

  29. S.L. Shapiro, T.S. Aeukolsky, Black Holes, White Dwarfs and Neutrons Stars (Willey, New York, 1983)

    Book  Google Scholar 

  30. T.P. Coffey, J. Math. Phys. 10, 1362 (1969)

    Article  ADS  Google Scholar 

  31. D.A. Dunnett, E.W. Laing, J.B. Taylor, J. Math. Phys. 9, 1819 (1968)

    Article  ADS  Google Scholar 

  32. H. Weitzner, Phys. Fluids 24, 2280 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.K. Ram, B. Dasgupta, Phys. Plasmas 17, 122104 (2010)

    Article  ADS  Google Scholar 

  34. P, Hoodbhoy, arXiv:2007.00200v1

  35. M.R. Jane, W.R. Wayne, S. Allan, Am. J. Phys. 59, 652 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No.ZR2019MA066), and National Natural Science Foundation of China (Grant No. 11874191).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper

Corresponding author

Correspondence to De-hua Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dh., Zhao, G., Sun, Zp. et al. Photoionization dynamics of Rydberg atom in a space-dependent magnetic field. Eur. Phys. J. D 75, 202 (2021). https://doi.org/10.1140/epjd/s10053-021-00217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00217-1

Navigation