Skip to main content
Log in

Broadband nonlinear optical response of graphdiyne for mid-infrared solid-state lasers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Graphdiyne (GDY), a novel all-carbon nanomaterial, is considered the most easily synthesized and stable carbon allotrope, positioning it as a promising photoelectric material. Herein, we successfully fabricated a high-quality GDY saturable absorber and saturable absorber mirror. Both broadband nonlinear saturable absorption and ultrafast relaxation dynamic properties in mid-infrared region of the GDY were investigated. All solid-state diode-pumped short and ultrashort pulsed lasers were realized using the GDY absorber at wavelengths of 2 and 2.8 µm, respectively. The results were then theoretically analyzed. This is the first presentation of ultrashort pulsed lasers in the mid-infrared region with GDY absorbers. These results resolutely confirm that GDY could be an optional broadband SA for all solid-state mid-infrared pulsed lasers, and they evidence its promising applications in mode-locked ultrafast lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. J. Lü, G. Zhao, G. J. Li, Z. D. Gao, S. D. Pan, and S. N. Zhu, Sci. China-Phys. Mech. Astron. 53, 638 (2010).

    Article  ADS  Google Scholar 

  2. Y. A. Liu, X. S. Yan, J. W. Wu, B. Zhu, Y. P. Chen, and X. F. Chen, Sci. China-Phys. Mech. Astron. 64, 234262 (2020), arXiv: 2009.12900.

    Article  ADS  Google Scholar 

  3. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, Opt. Lett. 36, 1104 (2011).

    Article  ADS  Google Scholar 

  4. T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, Opt. Express 19, A1082 (2011).

    Article  ADS  Google Scholar 

  5. A. Godard, Compt. Rend. Phys. 8, 1100 (2007).

    Article  ADS  Google Scholar 

  6. X. Liu, and M. Pang, Laser Photon. Rev. 13, 1800333 (2019).

    Article  ADS  Google Scholar 

  7. C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, IEEE J. Sel. Topics Quantum Electron. 55, 1 (2019).

    Google Scholar 

  8. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).

    Article  ADS  Google Scholar 

  9. J. Schneider, IEEE Photon. Technol. Lett. 7, 354 (1995).

    Article  ADS  Google Scholar 

  10. A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, T. I. O. Ragimov, Y. K. Skasyrskii, M. Y. Filipchuk, and M. P. Frolov, Bull. Lebedev Phys. Inst. 37, 169 (2010).

    Article  ADS  Google Scholar 

  11. Z. Li, Y. Zhang, C. Cheng, H. Yu, and F. Chen, Opt. Express 26, 11321 (2018).

    Article  ADS  Google Scholar 

  12. X. Zou, Y. X. Leng, Y. Y. Li, Y. Y. Feng, P. X. Zhang, Y. Hang, and J. Wang, Chin. Opt. Lett. 13, 081405 (2015).

    Article  ADS  Google Scholar 

  13. W. Liu, M. Liu, X. Chen, T. Shen, M. Lei, J. Guo, H. Deng, W. Zhang, C. Dai, X. Zhang, and Z. Wei, Commun. Phys. 3, 15 (2020).

    Article  Google Scholar 

  14. X. Liu, X. Yao, and Y. Cui, Phys. Rev. Lett. 121, 023905 (2018).

    Article  ADS  Google Scholar 

  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004), arXiv: cond-mat/0410550.

    Article  ADS  Google Scholar 

  16. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, Opt. Express 26, 8224 (2018), arXiv: 1802.00710.

    Article  ADS  Google Scholar 

  17. M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Kränkel, Opt. Lett. 43, 1726 (2018).

    Article  ADS  Google Scholar 

  18. J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, and L. Su, Photon. Res. 6, 762 (2018).

    Article  Google Scholar 

  19. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, Opt. Lett. 41, 56 (2016).

    Article  ADS  Google Scholar 

  20. Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, and J. Xu, Opt. Lett. 42, 871 (2017).

    Article  ADS  Google Scholar 

  21. M. Zong, X. Yang, J. Liu, Z. Zhang, S. Jiang, J. Liu, and L. Su, J. Lumin. 227, 117519 (2020).

    Article  Google Scholar 

  22. N. Cui, F. Zhang, Y. Zhao, Y. Yao, Q. Wang, L. Dong, H. Zhang, S. Liu, J. Xu, and H. Zhang, Nanoscale 12, 1061 (2020).

    Article  Google Scholar 

  23. Y. R. Wang, P. Lee, B. T. Zhang, Y. H. Sang, J. L. He, H. Liu, and C. K. Lee, Nanoscale 9, 19100 (2017).

    Article  Google Scholar 

  24. H. D. Yu, Y. R. Xue, and Y. L. Li, Adv. Mater. 31, 21 (2019).

    Google Scholar 

  25. F. Zhang, G. Liu, J. Yuan, Z. Wang, T. Tang, S. Fu, H. Zhang, Z. Man, F. Xing, and X. Xu, Nanoscale 12, 6243 (2020).

    Article  Google Scholar 

  26. J. Koo, M. Park, S. Hwang, B. Huang, B. Jang, Y. Kwon, and H. Lee, Phys. Chem. Chem. Phys. 16, 8935 (2014).

    Article  Google Scholar 

  27. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  Google Scholar 

  28. C. S. Huang, and Y. L. Li, Acta Physico-Chim. Sin. 32, 1314 (2016).

    Article  Google Scholar 

  29. J. Guo, R. Shi, R. Wang, Y. Wang, F. Zhang, C. Wang, H. Chen, C. Ma, Z. Wang, Y. Ge, Y. Song, Z. Luo, D. Fan, X. Jiang, J. Xu, and H. Zhang, Laser Photon. Rev. 14, 1900367 (2020).

    Article  ADS  Google Scholar 

  30. J. Guo, Z. Wang, R. Shi, Y. Zhang, Z. He, L. Gao, R. Wang, Y. Shu, C. Ma, Y. Ge, Y. Song, D. Fan, J. Xu, and H. Zhang, Adv. Opt. Mater. 8, 2000067 (2020).

    Article  Google Scholar 

  31. Q. Hao, J. Guo, L. Yin, T. Ning, Y. Ge, and J. Liu, Opt. Lett. 45, 5554 (2020).

    Article  ADS  Google Scholar 

  32. Y. Q. Zu, J. Guo, Q. Q. Hao, F. Zhang, C. Wang, J. Liu, and B. Wang, Sci. China Mater. 64, 683 (2021).

    Article  Google Scholar 

  33. C. Zhang, Q. Q. Hao, Y. Q. Zu, M. Y. Zong, J. Guo, F. Zhang, Y. Q. Ge, and J. Liu, Nanomaterials 10, 1848 (2020).

    Article  ADS  Google Scholar 

  34. X. Liu, D. Popa, and N. Akhmediev, Phys. Rev. Lett. 123, 093901 (2019).

    Article  ADS  Google Scholar 

  35. J. Liu, V. Khayrudinov, H. Yansg, Y. Sun, B. Matveev, M. Remennyi, K. Yang, T. Haggren, H. Lipsanen, F. Wang, B. Zhang, and J. He, J. Phys. Chem. Lett. 10, 4429 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974220, 61635012, 61675135, and 61905149), and the Natural Science Foundation of Guangdong Province (Grant No. 2019A1515011415).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, M., Zu, Y., Guo, J. et al. Broadband nonlinear optical response of graphdiyne for mid-infrared solid-state lasers. Sci. China Phys. Mech. Astron. 64, 294214 (2021). https://doi.org/10.1007/s11433-021-1720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1720-3

PACS number(s)

Navigation