Skip to main content
Log in

The Stokes Limit in a Three-Dimensional Keller–Segel–Navier–Stokes System

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the initial-boundary value problem of Keller–Segel–Navier–Stokes system

$$\begin{aligned} \left\{ \begin{aligned}&n_t^{\kappa } +\mathbf{u}^{\kappa } \cdot \nabla n^{\kappa } =\varDelta n^{\kappa } - \nabla \cdot \big (n^{\kappa }(1+n^{\kappa })^{-\alpha }\nabla c^{\kappa } \big ),&\qquad x\in \varOmega ,\,t>0, \\&c_t^{\kappa } +\mathbf{u}^{\kappa } \cdot \nabla c^{\kappa } =\varDelta c^{\kappa } -c^{\kappa } +n^{\kappa },&\qquad x\in \varOmega ,\,t>0,\\&\mathbf{u}^{\kappa }_t+\kappa ({\mathbf {u}}^{\kappa } \cdot \nabla )\mathbf{u}^{\kappa } =\varDelta \mathbf{u}^{\kappa } -\nabla P^{\kappa } + n^{\kappa }\nabla \phi ,&\qquad x\in \varOmega ,\,t>0,\\&\nabla \cdot \mathbf{u}^{\kappa } =0,&\qquad x\in \varOmega ,\,t>0\\ \end{aligned} \right. \end{aligned}$$

with no-flux boundary conditions for \(n^{\kappa }\) and \(c^{\kappa }\) and a no-slip boundary condition for \(\mathbf{u}^{\kappa }\), and with sufficiently regular initial data in a bounded domain \(\varOmega \subset {\mathbb {R}}^3\,\) with smooth boundary. Our result reveals that the solution \((n^{\kappa },\,c^{\kappa },\,\mathbf{} u^{\kappa })\) converges towards the solution of the corresponding Stokes variant \((\kappa =0)\) with an exponential time decay rate as \(\kappa \rightarrow 0_{+}\) provided that \(\Vert n_0\Vert _{L^\frac{3}{2}(\varOmega )},\) \(\Vert \nabla c_0\Vert _{L^3(\varOmega )}\) and \(\Vert {\mathbf {u}}_0\Vert _{L^3(\varOmega )}\) are suitable small. Therefore, we can extend the obtained result on the Stokes limit in the two-dimensional case to the more complicated three-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, T.: The Stokes limit in a three-dimensional chemotaxis-Navier–Stokes system. J. Math. Fluid Mech. 22, 1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Dis. Contin. Dyn. Syst. 35, 1891–1904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55, 107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujiwara, D., Morimoto, H.: An Lr-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 24, 685–700 (1997)

    MATH  Google Scholar 

  9. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  10. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ke, Y., Zheng, J.: An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation. Calc. Var. 58, 109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262, 5271–5305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorz, A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, Y., Xiang, Z.: Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions. J. Differ. Equ. 267, 1277–1321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tian, Y., Xiang, Z.: Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition. J. Differ. Equ. 269, 2012–2056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2018)

    Article  MATH  Google Scholar 

  23. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. Ann. Sci. Norm. Super. Pisa Cl. Sci. 18, 421–466 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Winkler, M., Xiang, Z.: The small-convection limit in a two-dimensional chemotaxis-Navier–Stokes system. Math. Z. 289, 71–108 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Winkler, M., Xiang, Z.: Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary. Commun. Partial Differ. Equ. 46, 1058–1091 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Winkler, M.: Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier)–Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller–Segel system with saturated sensitivity? J. Math. Fluid Mech. 20, 1889–1909 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, C., Xiang, Z.: The small-convection limit in a two-dimensional Keller–Segel–Navier–Stokes system. J. Differ. Equ. 267, 938–978 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, C., Xiang, Z.: Asymptotic dynamics on a chemotaxis-Navier–Stokes system with nonlinear diffusion and inhomogeneous boundary conditions. Math. Models Methods Appl. Sci. 30, 1325–1374 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller–Segel–Navier–Stokes system with matrix-valued sensitivity. J. Math. Anal. Appl. 461, 1748–1770 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, L., Jiang, K., Xia, A.: The small-convection limit in a two-dimensional chemotaxis-Navier–Stokes system with singular sensitivity. Math. Methods Appl. Sci. 44, 5626–5647 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referee for his/her detailed comments and valuable suggestions, which greatly improved the manuscript, and to Professor Zhaoyin Xiang for his helpful guidance. This work is supported by the Applied Fundamental Research Program of Sichuan Province (No. 2020YJ0264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J. The Stokes Limit in a Three-Dimensional Keller–Segel–Navier–Stokes System. J Dyn Diff Equat 35, 2157–2184 (2023). https://doi.org/10.1007/s10884-021-10043-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10043-z

Keywords

Mathematics Subject Classification

Navigation