Skip to main content

Advertisement

Log in

Genotyping and In Vitro Antifungal Susceptibility Profile of Neoscytalidium Species Isolates from Respiratory Tract

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The fungus genus Neoscytalidium is mainly distributed in (sub) tropical regions of the world and has been essentially considered as a phytopathogen. There are however several reports of human infection caused by Neoscytalidium spp. through direct or indirect contact with contaminated plants or soil. Reliable and accurate identification to species level is critical for implementing proper therapeutic strategies. In the present study we investigated the genotypes and in vitro antifungal susceptibility patterns of Neoscytalidium species identified from respiratory tracts of patients with various underlying diseases. The identity and diversity of the isolates were done using PCR and sequencing of five different loci (the ITS region, D1/D2 domains of 28S rRNA gene, and part of the beta tubulin, elongation factor 1α and chitin synthase genes). The in-vitro antifungal susceptibility was also performed using the Clinical and Laboratory Standards Institute (CLSI) M38-Ed3-2017 guidelines. Overall, 13 isolates were identified as Neoscytalidium species (eight N. dimidiatum and five N. novaehollandiae). Two sequence types (STs) were identified by the alignment of 1846 combined base pairs among 13 clinical isolates. All isolates classified as N. dimidiatum were clustered in ST6 (61.5%) and those of N. novaehollandiae were in ST7 (38.5%). Luliconazole was the most active antifungal in vitro against species. This is the first report of N. novaehollandiae isolation from respiratory tracts samples. Further study from other regions of the world with a larger set of clinical specimens is required to provide additional insight into diversity of Neoscytalidium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Richardson M, Bowyer P, Sabino R. The human lung and Aspergillus: you are what you breathe in? Med Mycol. 2019;57(Supplement_2):S145–54.

    Article  Google Scholar 

  2. Atchade E, Desmard M, Kantor E, et al. Fungal isolation in respiratory tract after lung transplantation: epidemiology, clinical consequences, and associated factors. Transpl Proc. 2020;52(1):326–32.

    Article  CAS  Google Scholar 

  3. Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, et al. Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. J Clin Microbiol. 2017;55:552–67.

    Article  CAS  Google Scholar 

  4. Phillips AJ, Alves A, Abdollahzadeh J, et al. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76:51–167.

    Article  CAS  Google Scholar 

  5. Hong CF, Gazis R, Crane JH, Zhang S. Prevalence and epidemics of Neoscytalidium stem and fruit canker on pitahaya (Hylocereus spp.) in South Florida. Plant Dis Mar. 2020. https://doi.org/10.1094/PDIS-10-19-2158-RE.

    Article  Google Scholar 

  6. Huang SK, Tangthirasunun N, Phillips AJ, et al. Morphology and phylogeny of Neoscytalidium orchidacearum sp. Nov. (Botryosphaeriaceae). Mycobiol. 2016;44:79–84.

    Article  Google Scholar 

  7. Pavlic D, Wingfield MJ, Barber P, Slippers B, Hardy GE, Burgess TI. Seven new species of the Botryosphaeriaceae from baobab and other native trees in Western Australia. Mycologia. 2008;100:851–66.

    Article  Google Scholar 

  8. Suwannarach N, Kumla J, Lumyong S. Leaf spot on cattleya orchid caused by Neoscytalidium orchidacearum in Thailand. Can J Plant Pathol. 2018;40:109–14.

    Article  Google Scholar 

  9. Madrid H, Ruiz-Cendoya M, Cano J, Stchigel A, Orofino R, Guarro J. Genotyping and in vitro antifungal susceptibility of Neoscytalidium dimidiatum isolates from different origins. Int J Antimicrobial Agents. 2009;34:351–4.

    Article  CAS  Google Scholar 

  10. Nattrass RM. A new species of Hendersonula (H. Toruloidea) on deciduous trees in Egypt. Trans Brit Mycol Soc. 1933;18:189–98.

    Article  Google Scholar 

  11. Zhu XM, Liu XF. A new species and genus distribution record from China: Neoscytalidium novaehollandiae. Indian J Microbiol. 2012;52:565–8.

    Article  Google Scholar 

  12. Yew SM, Chan CL, Lee KW, et al. A five-year survey of dematiaceous fungi in a tropical hospital reveals potential opportunistic species. PLoS One. 2014;6:9(8), e104352. doi: https://doi.org/10.1371/journal.pone.0104352.

  13. Slippers B, Boissin E, Phillips AJ, et al. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud Mycol. 2013;76:31–49. https://doi.org/10.3114/sim0020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tonani L, Morosini NS, de Menezes HD, et al. In vitro susceptibilities of Neoscytalidium spp. sequence types to antifungal agents and antimicrobial photodynamic treatment with phenothiazinium photosensitizers. Fungal Biol. 2018;122:436–48. https://doi.org/10.1016/j.funbio.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  15. Dionnem B, Neff L, Lee SA, et al. Pulmonary fungal infection caused by Neoscytalidium dimidiatum. J Clin Microbiol. 2015;53:2381–4.

    Article  Google Scholar 

  16. Leuthard D, Walther M, Galliker N, Bosshard PP. Epidemiological and clinical aspects of patients with Neoscytalidium spp. dermatomycoses in Switzerland. J Eur Acad Dermatol Venereol. 2020;34:4–5. https://doi.org/10.1111/jdv.15836.

    Article  Google Scholar 

  17. Shokoohi GR, Ansari S, Abolghazi A, et al. The first case of fingernail onychomycosis due to Neoscytalidium novaehollandiae, molecular identification and antifungal susceptibility. J Mycol Med. 2019;20:100920. https://doi.org/10.1016/j.mycmed.2019.100920.

    Article  Google Scholar 

  18. Shokoohi GR, Badali H, Mirhendi H, et al. In vitro activities of Luliconazole, Lanoconazole, and Efinaconazole compared with those of five antifungal drugs against melanized fungi and relatives. Antimicrob Agents Chemother. 2017;24:61(11), e00635–17.

  19. Gentles JC, Evans EG. Infection of the feet and nails with Hendersonula toruloidea. Sabouraudia. 1970;8:72–5.

    Article  CAS  Google Scholar 

  20. Garinet S, Tourret J, Barete S, et al. Invasive cutaneous Neoscytalidium infections in renal transplant recipients: a series of five cases. BMC Infect Dis. 2015;15:535. https://doi.org/10.1186/s12879-015-1241-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arrese JE, Pierard-Franchimont C, Pierard GE. Scytalidium dimidiatum melanonychia and scaly plantar skin in four patients from the Maghreb: imported disease or outbreak in a Belgian mosque? Dermatology. 2001;202:183–5. https://doi.org/10.1159/000051631.

    Article  CAS  PubMed  Google Scholar 

  22. Bunyaratavej S, Prasertworonun N, Leeyaphan C, Chaiwanon O, Muanprasat C, Matthapan L. Distinct characteristics of Scytalidium dimidiatum and non-dermatophyte onychomycosis as compared with dermatophyte onychomycosis. J Dermatol. 2015;42:258–62. https://doi.org/10.1111/1346-8138.12768.

    Article  PubMed  Google Scholar 

  23. Didehdar M, Shokohi T, Khansarinejad B, Sefidgar SA, Abastabar M, Haghani I, Amirrajab N, Mondanizadeh M. Characterization of clinically important dermatophytes in North of Iran using PCR-RFLP on ITS region. Journal de Mycologie Medicale. 2016;1;26(4):345–50.

  24. Ray JD, Burgess T, Lanoiselet VM. First record of Neoscytalidium dimidiatum and N. novaehollandiae on Mangifera indica and N. dimidiatum on Ficus carica in Australia. Aust Plant Dis Notes. 2010;5:48–50.

    Article  Google Scholar 

  25. CLSI. 2017. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: 3rd edition. Document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

  26. Ikram A, Hussain W, Satti ML, Wiqar MA. Invasive infection in a young immunocompetent soldier caused by Scytalidium dimidiatum. J Coll Physicians Surg Pak. 2009;19:64–6.

    PubMed  Google Scholar 

  27. al-Rajhi AA, Awad AH, al-Hedaithy SS, Forster RK, Caldwell KC. Scytalidium dimidiatum fungal endophthalmitis. Brit J Ophthalmol. 1993;77:388–90.

    Article  CAS  Google Scholar 

  28. Calvillo-Medina RP, Martínez-Neria M, Mena-Portales J, et al. Identification and biofilm development by a new fungal keratitis aetiologic agent. Mycoses. 2019;62:62–72. https://doi.org/10.1111/myc.12849.

    Article  CAS  PubMed  Google Scholar 

  29. Bakhshizadeh M, Hashemian HR, Najafzadeh MJ, Dolatabadi S, Zarrinfar H. First report of rhinosinusitis caused by Neoscytalidium dimidiatum in Iran. J Med Microbiol. 2014;63:1017–9. https://doi.org/10.1099/jmm.0.065292-0.

    Article  PubMed  Google Scholar 

  30. Dunn JJ, Wolfe MJ, Trachtenberg J, Kriesel JD, Orlandi RR, Carroll KC. Invasive fungal sinusitis caused by Scytalidium dimidiatum in a lung transplant recipient. J Clin Microbiol. 2003;41:5817–9.

    Article  Google Scholar 

  31. Mani RS, Chickabasaviah YT, Nagarathna S, et al. Cerebral phaeohyphomycosis caused by Scytalidium dimidiatum: a case report from India. Med Mycol. 2008;46:705–11. https://doi.org/10.1080/13693780802172017.

    Article  PubMed  Google Scholar 

  32. Yang SJ, Ng CY, Wu TS, Huang PY, Wu YM, Sun PL. Deep cutaneous Neoscytalidium dimidiatum Infection: successful outcome with Amphotericin B therapy. Mycopathologia. 2019;184:169–76. https://doi.org/10.1007/s11046-018-0308-z.

    Article  PubMed  Google Scholar 

  33. Tan DH, Sigler L, Gibas CF, Fong IW. Disseminated fungal infection in a renal transplant recipient involving Macrophomina phaseolina and Scytalidium dimidiatum: case report and review of taxonomic changes among medically important members of the Botryosphaeriaceae. Med Mycol. 2008;46:285–92. https://doi.org/10.1080/13693780701759658.

    Article  CAS  PubMed  Google Scholar 

  34. Willinger B, Kopetzky G, Harm F, et al. Disseminated infection with Nattrassia mangiferae in an immunosuppressed patient. J Clin Microbiol. 2004;42:478–80.

    Article  Google Scholar 

  35. Drouhet E, Dupont B. Laboratory and clinical assessment of ketoconazole in deep-seated mycoses. Am J Med. 1983;74:30–47.

    Article  CAS  Google Scholar 

  36. Benne CA, Neeleman C, Bruin M, de Hoog GS, Fleer A. Disseminating infection with Scytalidium dimidiatum in a granulocytopenic child. Eur J Clin Microbiol Infect Dis. 1993;12:118–21.

    Article  CAS  Google Scholar 

  37. Elinav H, Izhar U, Benenson S, et al. Invasive Scytalidium dimidiatum infection in an immunocompetent adult. J Clin Microbiol. 2009;47:1259–63. https://doi.org/10.1128/JCM.01874-08.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hariri A, Choudhury N, Saleh HA. Scytalidium dimidiatum associated invasive fungal sinusitis in an immunocompetent patient. J Laryngol Otol. 2014;128:1018–21. https://doi.org/10.1017/S002221511400214X.

    Article  CAS  PubMed  Google Scholar 

  39. Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, Shimojima M, Kirikae T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS ONE. 2013;8:e66358.

    Article  CAS  Google Scholar 

  40. Ismail A, Cirvilleri G, Lombard L, Crous PW, Groenewald JZ, Polizzi G. characterisation of neofusicoccum species causing mango dieback. J Plant Pathol. 2013;95:549–57.

    Google Scholar 

  41. Khan Z, Ahmad S, Joseph L, Chandy R. Cutaneous phaeohyphomycosis due to Neoscytalidium dimidiatum: first case report from Kuwait. Med Mycol. 2009;19:138–42.

    Article  Google Scholar 

  42. Lacroix C, de Chauvin MF. In vitro activity of amphotericin B, itraconazole, voriconazole, posaconazole, caspofungin and terbinafine against Scytalidium dimidiatum and Scytalidium hyalinum clinical isolates. J Antimicrob Chemother. 2008;61:835–7. https://doi.org/10.1093/jac/dkn011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The participating patients are thanked for their kind cooperation, which was essential for the completion of the study.

Funding

This study was supported by a research fund (No. 2935) from Invasive Fungi Research Center of Mazandaran University of Medical Sciences, Sari, Iran. Ana Alastruey-Izquierdo is supported by a research project from the Fondo de Investigación Sanitaria (PI16/00035); she has received research grants or honoraria as a speaker or advisor from Gilead Sciences, MSD, Astellas, Pfizer, F2G, Amplix and Scynexis outside the submitted work. The work of Seyedmojtaba Seyedmousavi was supported [in part] by the Intramural Research Program of the National Institutes of Health, Clinical Center, Department of Laboratory Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Alastruey-Izquierdo or Mohammad T. Hedayati.

Ethics declarations

Conflict of Interest

All other authors declared no potential conflict of interest of this article.

Additional information

Handling Editor: Macit Ilkit.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, S., Gheisari, M., Abastabar, M. et al. Genotyping and In Vitro Antifungal Susceptibility Profile of Neoscytalidium Species Isolates from Respiratory Tract. Mycopathologia 186, 833–845 (2021). https://doi.org/10.1007/s11046-021-00545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00545-1

Keywords

Navigation