Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A prospective whole-mixture approach to assess risk of the food and chemical exposome

Abstract

Many widely used chemicals result in ubiquitous human exposure from multiple sources, including diet. Legislation mainly deals with the toxicological evaluation of single substances owing to a methodological and conceptual lack of alternatives, and does so within defined silos subject to over 40 distinct regulations in the EU alone. Furthermore, much of the research and many of the initiatives concerned with the assessment and evaluation of chemical mixtures and their potential effects on human health rely on retrospective analysis. Here we propose an approach for the prospective identification, assessment and regulation of mixtures relevant to human health. We address two distinct aspects of toxicology—which chemicals actually do occur together, and how potential mixture-related health hazards can be predicted—with an adapted concept of the exposome and large-scale hazard screens. The proactive use of the likelihood of co-exposure, together with the new approach of methods-based testing, may be a timely and feasible way of identifying those substances and mixtures where hazards may have been overlooked and regulatory action is needed. Ideally, we would generate co-exposure patterns for specific consumer groups, depending on lifestyle and dietary habits, to assess the specific risk of identified mixtures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk assessment approaches.
Fig. 2: Experimental regulatory toxicology.

Similar content being viewed by others

References

  1. Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Huang, Y. & Fang, M. Nutritional and environmental contaminant exposure: a tale of two co-existing factors for disease risks. Environ. Sci. Technol. 54, 14793–14796 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. ICF et al. EU Insights Chemical mixtures awareness, understanding and risk perceptions. EFSA Supporting Publ. 16, EN-1602 (2019).

    Google Scholar 

  4. Drakvik, E. et al. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 134, 105267–105274 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals (Environment, Health and Safety Division, Environment Directorate, OECD, 2018).

  6. Eskola, M., Elliott, C. T., Hajslova, J., Steiner, D. & Krska, R. Towards a dietary-exposome assessment of chemicals in food: an update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr. 60, 1890–1911 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Chu, I. et al. Mixture effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyl congeners in rats. Chemosphere 43, 807–814 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Heise, T. et al. Hepatotoxic combination effects of three azole fungicides in a broad dose range. Arch. Toxicol. 92, 859–872 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Ito, D. T., Molina, H. M., Andriolo, A. & Borges, D. R. The combination of atorvastatin and ethanol is not more hepatotoxic to rats than the administration of each drug alone. Braz. J. Med. Biol. Res. 40, 343–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kortenkamp, A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 115, 98–105 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lutz, W. K., Vamvakas, S., Kopp-Schneider, A., Schlatter, J. & Stopper, H. Deviation from additivity in mixture toxicity: relevance of nonlinear dose-response relationships and cell line differences in genotoxicity assays with combinations of chemical mutagens and gamma-radiation. Environ. Health Perspect. 110, 915–918 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmähl, D. Combination effects in chemical carcinogenesis (experimental results). Oncology 33, 73–76 (1976).

    Article  PubMed  Google Scholar 

  13. Wormley, D. D., Ramesh, A. & Hood, D. B. Environmental contaminant-mixture effects on CNS development, plasticity, and behavior. Toxicol. Appl. Pharmacol. 197, 49–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Communication from the Commission to the Council—The Combination Effects of Chemicals: Chemical Mixtures COM 0252 (European Commission, 2012).

  15. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Commitee and the Committee of the Regions—Chemicals Strategy for Sustainability COM 667 (European Commission, 2020).

  16. Fowler, S. et al. Progress in prediction and interpretation of clinically relevant metabolic drug-drug interactions: a minireview illustrating recent developments and current opportunities. Curr. Pharmacol. Rep. 3, 36–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L., Zhang, Y. D., Zhao, P. & Huang, S. M. Predicting drug-drug interactions: an FDA perspective. AAPS J. 11, 300–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Tralau, T. & Luch, A. “Drugs on oxygen”: an update and perspective on the role of cytochrome P450 testing in pharmacology. Expert Opin. Drug Metab. Toxicol. 8, 1357–1362 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Alarcan, J. et al. Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin—individual and mixture effects in a 28-day study in female Wistar rats. Food Chem. Toxicol. 140, 111306 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Lasch, A., Marx-Stoelting, P., Braeuning, A. & Lichtenstein, D. More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Arch. Toxicol. 95, 1397–1411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boobis, A. et al. Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment. Crit. Rev. Toxicol. 41, 369–383 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Hartung, T. in Animal Experimentation: Working Towards a Paradigm Change (ed. Herrmann, K.) 673–687 (Brill, 2019).

  24. Paparella, M., Colacci, A. & Jacobs, M. N. Uncertainties of testing methods: what do we (want to) know about carcinogenicity? Alt. Animal Experiment. 34, 235–252 (2017).

    Google Scholar 

  25. EFSA Scientific Committee et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 17, e05634 (2019).

    PubMed Central  Google Scholar 

  26. Toxicity and Assessment of Chemical Mixtures (SCHER, SCCS & SCENIHR, 2012).

  27. Springer, A., Herrmann, H., Sittner, D., Herbst, U. & Schulte, A. REACH Compliance: Data Availability of REACH Registration. Part 1: Screening of Chemicals >1000 tpa (Umweltbundesamt (German Environment Agency), 2015).

  28. Schwedler, G. et al. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017. Int. J. Hygiene Environ. Health 225, 113444 (2020).

    Article  CAS  Google Scholar 

  29. Howdeshell, K. L. et al. Dose addition models based on biologically relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats. Toxicol. Sci. 148, 488–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox, M. A., Brewer, L. E. & Martin, L. An overview of literature topics related to current concepts, methods, tools, and applications for cumulative risk assessment (2007-2016). Int. J. Environ. Res. Public Health 14, 389 (2017).

  31. McCarty, L. S. & Borgert, C. J. Review of the toxicity of chemical mixtures: theory, policy, and regulatory practice. Regul. Toxicol. Pharmacol. 45, 119–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Moretto, A. et al. A framework for cumulative risk assessment in the 21st century. Crit. Rev. Toxicol. 47, 85–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Kortenkamp, A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr. Opin. Pharmacol. 19, 105–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dennis, K. K. et al. The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect. 124, 1504–1510 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cobbina, S. J. et al. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. Hazard. Mater. 294, 109–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Adler-Flindt, S. & Martin, S. Comparative cytotoxicity of plant protection products and their active ingredients. Toxicol. In Vitro 54, 354–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Rizzati, V., Briand, O., Guillou, H. & Gamet-Payrastre, L. Effects of pesticide mixtures in human and animal models: an update of the recent literature. Chem. Biol. Interact. 254, 231–246 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Xiong, S. & Huang, C. Synergistic strategies of predominant toxins in snake venoms. Toxicol. Lett. 287, 142–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Cedergreen, N. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9, e96580 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  40. Van Broekhuizen, F., Posthuma, L. & Traas, T. Addressing Combined Effects of Chemicals in Environmental Safety Assessment Under REACH-A Thought Starter RIVM letter report 2016-0162 (National Institute for Public Health and the Environment, 2017).

  41. Bopp, S. K. et al. Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 120, 544–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krewski, D. et al. Toxicity testing in the 21st century: a vision and a strategy. J. Toxicol. Environ. Health B 13, 51–138 (2010).

    Article  CAS  Google Scholar 

  43. Judson, R. S. et al. In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ. Health Perspect. 118, 485–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Tralau, T. et al. Regulatory toxicology in the twenty-first century: challenges, perspectives and possible solutions. Arch. Toxicol. 89, 823–850 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Karmaus, A. L., Filer, D. L., Martin, M. T. & Houck, K. A. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program. Food Chem. Toxicol. 92, 188–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Browne, P., Noyes, P. D., Casey, W. M. & Dix, D. J. Application of adverse outcome pathways to U.S. EPA’s endocrine disruptor screening program. Environ. Health Perspect. 125, 096001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Endocrine Disruptor Screening Program: Use of High Throughput Assays and Computational Tools (US EPA, 2015).

  48. Escher, B. I. & Neale, P. A. Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays. Environ. Toxicol. Chem. 40, 487–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Vinggaard, A. M. et al. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. Environ. Int. 146, 106191 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. DeBord, D. G. et al. Use of the “exposome” in the practice of epidemiology: a primer on -omic technologies. Am. J. Epidemiol. 184, 302–314 (2016).

    Article  PubMed  Google Scholar 

  51. Eskola, M., Elliott, C. T., Hajslova, J., Steiner, D. & Krska, R. Towards a dietary-exposome assessment of chemicals in food: an update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr. 60, 1890–1911 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Vermeulen, R., Schymanski, E. L., Barabasi, A. L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xue, J., Lai, Y., Liu, C. W. & Ru, H. Towards mass spectrometry-based chemical exposome: current approaches, challenges, and future directions. Toxics 7, 41 (2019).

  54. Dennis, K. K. et al. Biomonitoring in the era of the exposome. Environ. Health Perspect. 125, 502–510 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. The BfR MEAL Study http://www.bfr-meal-studie.de/en/meal-homepage.html (Federal Institute for Risk Assessment, 2021).

  56. Sobus, J. R. et al. Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. J. Exposure Sci. Environ. Epidemiol. 28, 411–426 (2018).

    Article  CAS  Google Scholar 

  57. Sobus, J. R. et al. Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance. Anal. Bioanal. Chem. 411, 835–851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ulrich, E. M. et al. EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal. Bioanal. Chem. 411, 853–866 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Bloch, R. et al. Non-targeted mercapturic acid screening in urine using LC-MS/MS with matrix effect compensation by postcolumn infusion of internal standard (PCI-IS). Anal. Bioanal. Chem. 411, 7771–7781 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Dixon, H. M. et al. Discovery of common chemical exposures across three continents using silicone wristbands. R. Soc. Open Sci. 6, 181836–181836 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bopp, S. K. et al. Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Crit. Rev. Toxicol. https://doi.org/10.1080/10408444.2019.1579169 (2019).

  62. Kyhl, H. B. et al. The Odense Child Cohort: aims, design, and cohort profile. Paediatr. Perinat. Epidemiol. 29, 250–258 (2015).

    Article  PubMed  Google Scholar 

  63. Mishra, S., Stierman, B., Gahche, J. J. & Potischman, N. Dietary Supplement Use Among Adults: United States, 2017–2018 (Centers for Disease Control and Prevention, 2021).

  64. Smirnova, L., Harris, G., Leist, M. & Hartung, T. Cellular resilience. Alt. Animal Experiment. 32, 247–260 (2015).

    Google Scholar 

  65. Seeger, B. et al. Assessment of mixture toxicity of (tri)azoles and their hepatotoxic effects in vitro by means of omics technologies. Arch. Toxicol. 93, 2321–2333 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Bulusu, K. C. et al. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov. Today 21, 225–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Cheng, F., Kovacs, I. A. & Barabasi, A. L. Network-based prediction of drug combinations. Nat. Commun. 10, 1197 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  68. German National Cohort (GNC) Consortium. The German National Cohort: aims, study design and organization. Eur. J. Epidemiol. 29, 371–382 (2014).

    Article  Google Scholar 

  69. Evans, R. M., Martin, O. V., Faust, M. & Kortenkamp, A. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals? Sci. Total Environ. 543, 757–764 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Hernández, A. F. & Tsatsakis, A. M. Human exposure to chemical mixtures: challenges for the integration of toxicology with epidemiology data in risk assessment. Food Chem. Toxicol. 103, 188–193 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.K., M.O. and T.T. initially developed and drafted the concept. All authors contributed equally to the further conceptualization, writing and editing of the manuscript. All figures were generated by J.K.

Corresponding authors

Correspondence to T. Tralau, M. Oelgeschläger or J. Kugler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Thomas Hartung, Ivonne Rietjens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tralau, T., Oelgeschläger, M., Kugler, J. et al. A prospective whole-mixture approach to assess risk of the food and chemical exposome. Nat Food 2, 463–468 (2021). https://doi.org/10.1038/s43016-021-00316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00316-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing