Skip to main content
Log in

Nano- and Microsized Forms of Silymarin and Silybin

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Modern preparations of milk thistle have been used since 1960−1970s. By their chemical nature, the active substances of milk thistle are flavonoids (flavonolignans). The preparations used are both the milk thistle flavonolignan complex (silymarin) and the most active individual substance (silybin). Preparations based on silymarin and silybin are in demand in clinical practice as hepatoprotectors; however, their serious drawbacks are low water solubility and bioavailability, which significantly reduces their therapeutic potential. In this regard, nano- and microforms of silymarin/silybin are being actively developed. The review provides information on the sources of obtaining, chemical structure, and biological activity of silymarin and silybin. The main known nano- and microforms of silymarin and silybin are considered, and the methods for their obtaining are described. These forms are obtained using one or a combination of several technological methods: dispersion, dissolution in suitable solvents, formation of inclusion complexes and solid dispersions, chemical modification, etc. The developed forms of silymarin/silybin are nanocrystals, solid dispersions, solid lipid systems, inclusion complexes, dendrisomes, liposomes, nano- and microemulsions, polymer particles, and nanocomposites. Each of these forms has a number of advantages, which, in general, include an increase in the solubility and bioavailability of silybin, prolonged/controlled release from nano- and microstructures, and an increase in stability. The development of nano- and microforms of silymarin and silybin made it possible to obtain compositions with improved physicochemical characteristics and biopharmaceutical properties, as well as a higher specific activity (including hepatoprotective, antitumor, antiviral, and antimicrobial activity), which gives grounds for expanding the therapeutic range of ​​application of drugs of this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Bijak, Molecules 22, 1942 (2017). https://doi.org/10.3390/molecules22111942

    Article  CAS  Google Scholar 

  2. A. Federico, M. Dallio, and C. Loguercio, Molecules 22, 191 (2017). https://doi.org/10.3390/molecules22020191

    Article  CAS  Google Scholar 

  3. D. Biedermann, E. Vavríková, L. Cvak, and V. Kren, Nat. Prod. Rep. 31, 1138 (2014). https://doi.org/10.1039/C3NP70122K

    Article  CAS  Google Scholar 

  4. Di A. Costanzo, and R. Angelico, Molecules 24, 2155 (2019). https://doi.org/10.3390/molecules24112155

    Article  CAS  Google Scholar 

  5. U. Mengs, R.-T. Pohl, and T. Mitchell, Curr. Pharm. Biotechnol. 13, 1964 (2012). https://doi.org/10.2174/138920112802273353

    Article  CAS  Google Scholar 

  6. A. Faridi Esfanjani, and S. M. Jafari, Colloids Surf., B 146, 532 (2016). https://doi.org/10.1016/j.colsurfb.2016.06.053

    Article  CAS  Google Scholar 

  7. A. George, P. A. Shah, and P. S. Shrivastav, Int. J. Pharm. 561, 244 (2019). https://doi.org/10.1016/j.ijpharm.2019.03.011

    Article  CAS  Google Scholar 

  8. E. Ladas, D. J. Kroll, and K. M. Kelly, “Milk thistle,” in Encyclopedia of Dietary Supplements (2010), p. 550. https://doi.org/10.1201/b13959

  9. S. AbouZid and O. M. Ahmed, Stud. Nat. Prod. Chem. 40, 469 (2013). https://doi.org/10.1016/B978-0-444-59603-1.00014-X

    Article  CAS  Google Scholar 

  10. V. A. Kurkin, Pharm. Chem. J. 37, 189 (2003). https://doi.org/10.1023/A:1024782728074

    Article  CAS  Google Scholar 

  11. V. A. Kurkin, G. G. Zapesochnaya, E. V. Avdeeva, et al., Milk Thistle (Ofort, Samara, 2010) [in Russian].

    Google Scholar 

  12. D. J. Kroll, H. S. Shaw, and N. H. Oberlies, Integr. Cancer Ther. 6, 110 (2007). https://doi.org/10.1177/1534735407301825

    Article  CAS  Google Scholar 

  13. F. Kvasnička, B. Bíba, R. Ševčík, et al., J. Chromatogr., A 990, 239 (2003). https://doi.org/10.1016/S0021-9673(02)01971-4

    Article  CAS  Google Scholar 

  14. N.-C. Kim, T. N. Graf, C. M. Sparacino, et al., Org. Biomol. Chem. 1, 1684 (2003). https://doi.org/10.1039/b300099k

    Article  CAS  Google Scholar 

  15. J. I. Lee, M. Narayan, and J. S. Barrett, J. Chromatogr., B 845, 95 (2007). https://doi.org/10.1016/j.jchromb.2006.07.063

  16. D. Y.-W. Lee and Y. Liu, J. Nat. Prod. 66, 1171 (2003). https://doi.org/10.1021/np030163b

    Article  CAS  Google Scholar 

  17. J. G. Napolitano, D. C. Lankin, T. N. Graf, et al., J. Org. Chem. 78, 2827 (2013). https://doi.org/10.1021/jo302720h

    Article  CAS  Google Scholar 

  18. W. A. Smith, D. R. Lauren, E. J. Burgess, et al., Planta Med. 71, 877 (2005). https://doi.org/10.1055/s-2005-864187

    Article  CAS  Google Scholar 

  19. C. S. Chambers, V. Holečková, L. Petrásková, et al., Food Res. Int. 100, 339 (2017). https://doi.org/10.1016/j.foodres.2017.07.017

    Article  CAS  Google Scholar 

  20. T. T. Diep, P. Kiem, N. T. Dong, et al., J. Chem. 45, 106 (2007).

    Google Scholar 

  21. “2071. Milk thistle dry extract, refined and standardized,” in European Pharmacopoeia (Council Europe, Eur. Direct. Quality Med. Healthcare, Strasbourg, 2013).

  22. “Powdered Milk Thistle Extract. USP 38-NF 33,” in The United States Pharmacopeia and National Formulary (Deutscher Apotheker Verlag, Stuttgart, 2014).

  23. S. Nyiredy, Z. Samu, Z. Szucs, et al., J. Chromatogr. Sci. 46, 93 (2008). https://doi.org/10.1093/chromsci/46.2.93

    Article  CAS  Google Scholar 

  24. S. F. AbouZid, H. S. Ahmed, A. S. Moawad, et al., Fitoterapia 119, 175 (2017). https://doi.org/10.1016/j.fitote.2017.04.002

    Article  CAS  Google Scholar 

  25. K. Krenek, P. Marhol, Ž. Peikerová, et al., Food Res. Int. 65, 115 (2014). https://doi.org/10.1016/j.foodres.2014.02.001

    Article  CAS  Google Scholar 

  26. D. Csupor, A. Csorba, and J. Hohmann, J. Pharm. Biomed. Anal. 130, 301 (2016). https://doi.org/10.1016/j.jpba.2016.05.034

    Article  CAS  Google Scholar 

  27. L. Abenavoli, R. Capasso, N. Milic, and F. Capasso, Phytother. Res. 24, 1423 (2010). https://doi.org/10.1002/ptr.3207

    Article  CAS  Google Scholar 

  28. T.-C. Bai, J.-J. Zhu, J. Hu, et al., Fluid Phase Equilib. 254, 204 (2007). https://doi.org/10.1016/j.fluid.2007.03.009

    Article  CAS  Google Scholar 

  29. Di G. Fabio, V. Romanucci, Di C. Marino, et al., Planta Med. 79, 1077 (2013). https://doi.org/10.1055/s-0032-1328703

    Article  CAS  Google Scholar 

  30. J. S. Woo, T.-S. Kim, J.-H. Park, and S.-C. Chi, Arch. Pharm. Res. 30, 82 (2007). https://doi.org/10.1007/BF02977782

    Article  CAS  Google Scholar 

  31. A. N. Kazyulin, V. A. Shestakov, A. Yu. Goncharenko, et al., Eksp. Klin. Gastroenterol., No. 7, 73 (2018).

  32. F. Fraschini, G. Demartini, and D. Esposti, Clin. Drug Invest. 22, 51 (2002). https://doi.org/10.2165/00044011-200222010-00007

    Article  CAS  Google Scholar 

  33. L. Abenavoli, A. A. Izzo, N. Milic, et al., Phytother. Res. 32, 2202 (2018). https://doi.org/10.1002/ptr.6171

    Article  Google Scholar 

  34. J.-W. Wu, L.-C. Lin, S.-C. Hung, et al., J. Pharm. Biomed. Anal. 45, 635 (2007). https://doi.org/10.1016/j.jpba.2007.06.026

    Article  CAS  Google Scholar 

  35. S. Javed, K. Kohli, and M. Ali, Altern. Med. Rev. 16, 239 (2011). https://www.ncbi.nlm.nih.gov/pubmed/21951025

    Google Scholar 

  36. Y. Wang, L. Zhang, Q. Wang, and D. Zhang, J. Biomed. Nanotechnol. 10, 543 (2014). https://doi.org/10.1166/jbn.2014.1798

    Article  CAS  Google Scholar 

  37. U. Ahmad, M. Faiyazuddin, M. T. Hussain, et al., Acta Physiol. Plantarum. 37 (11), 253 (2015). https://doi.org/10.1007/s11738-015-2008-3

    Article  CAS  Google Scholar 

  38. V. Piazzini, M. D’Ambrosio, C. Luceri, et al., Molecules 24, 1688 (2019). https://doi.org/10.3390/molecules24091688

    Article  CAS  Google Scholar 

  39. Neha, A. S. Jaggi, and N. Singh, Adv. Exp. Med. Biol. 929, 25 (2016). https://doi.org/10.1007/978-3-319-41342-6_2

    Article  CAS  Google Scholar 

  40. X.-X. Zhu, Y.-H. Ding, Y. Wu, et al., Expert Rev. Clin. Pharm. 9, 1323 (2016). https://doi.org/10.1080/17512433.2016.1208563

    Article  CAS  Google Scholar 

  41. C.-H. Liu, A. Jassey, H.-Y. Hsu, and L.-T. Lin, Molecules 24, 1552 (2019). https://doi.org/10.3390/molecules24081552

    Article  CAS  Google Scholar 

  42. P. F. Surai, Antioxidants 4, 204 (2015). https://doi.org/10.3390/antiox4010204

    Article  CAS  Google Scholar 

  43. M. Borsari, C. Gabbi, F. Ghelfi, et al., J. Inorgan. Biochem. 85, 123 (2001). https://doi.org/10.1016/S0162-0134(01)00198-2

    Article  CAS  Google Scholar 

  44. A. Hajaghamohammadi, A. Ziaee, and R. Rafiei, Hepatit. Mon. 8, 191 (2008).

    Google Scholar 

  45. V. A. Kurkin, V. M. Ryzhov, O. V. Biryukova, et al., Pharm. Chem. J. 43, 101 (2009). https://doi.org/10.1007/s11094-009-0241-z

    Article  CAS  Google Scholar 

  46. N. Esmaeil, S. B. Anaraki, M. Gharagozloo, and B. Moayedi, Int. Immunopharmacol. 50, 194 (2017). https://doi.org/10.1016/j.intimp.2017.06.030

    Article  CAS  Google Scholar 

  47. S. K. Das and S. Mukherjee, Toxicol. Mech. Methods 22, 409 (2012). https://doi.org/10.3109/15376516.2012.673090

    Article  CAS  Google Scholar 

  48. E. J. Kim, M. Y. Lee, and Y. J. Jeon, Korean J. Physiol. Pharmacol. 19, 211 (2015). https://doi.org/10.4196/kjpp.2015.19.3.211

    Article  CAS  Google Scholar 

  49. N. Polachi, G. Bai, T. Li, et al., Eur. J. Med. Chem. 123, 577 (2016). https://doi.org/10.1016/j.ejmech.2016.07.070

    Article  CAS  Google Scholar 

  50. C. Dehmlow, N. Murawski, and H. de Groot, Life Sci. 58, 1591 (1996). https://doi.org/10.1016/0024-3205(96)00134-8

    Article  CAS  Google Scholar 

  51. S. Clichici, D. Olteanu, A.-L. Nagy, et al., J. Med. Food. 18, 290 (2015). https://doi.org/10.1089/jmf.2013.0179

    Article  CAS  Google Scholar 

  52. K. Münter, D. Mayer, and H. Faulstich, Biochim. Biophys. Acta: Biomembr. 860, 91 (1986). https://doi.org/10.1016/0005-2736(86)90502-X

    Article  Google Scholar 

  53. A. Valenzuela and A. Garrido, Biol. Res. 27, 105 (1994). https://pubmed.ncbi.nlm.nih.gov/8640239/.

    CAS  Google Scholar 

  54. S. Trakulsrichai, C. Sriapha, A. Tongpoo, et al., Int. J. Gen. Med. 10, 395 (2017). https://doi.org/10.2147/IJGM.S141111

    Article  Google Scholar 

  55. J. Sonnenbichler and I. Zetl, Prog. Clin. Biol. Res. 213, 319 (1986). https://pubmed.ncbi.nlm.nih.gov/2424029/.

    CAS  Google Scholar 

  56. J. Sonnenbichler and I. Zetl, Prog. Clin. Biol. Res. 280, 369 (1988). https://pubmed.ncbi.nlm.nih.gov/3174701/.

    CAS  Google Scholar 

  57. C. W. Kheong, N. R. N. Mustapha, and S. Mahadeva, Clin. Gastroenterol. Hepatol. 15 (12), 1940 (2017). https://doi.org/10.1016/j.cgh.2017.04.016

    Article  CAS  Google Scholar 

  58. J. Wagoner, A. Negash, O. J. Kane, et al., Hepatology 51, 1912 (2010). https://doi.org/10.1002/hep.23587

    Article  CAS  Google Scholar 

  59. T. Umetsu, J. Inoue, T. Kogure, et al., Biochem. Biophys. Rep. 14, 20 (2018). https://doi.org/10.1016/j.bbrep.2018.03.003

    Article  Google Scholar 

  60. J. McClure, D. H. Margineantu, I. R. Sweet, and S. J. Polyak, Virology 449, 96 (2014). https://doi.org/10.1016/j.virol.2013.11.003

    Article  CAS  Google Scholar 

  61. S. J. Polyak, C. Morishima, M. C. Shuhart, et al., Gastroenterology 132, 1925 (2007). https://doi.org/10.1053/j.gastro.2007.02.038

    Article  CAS  Google Scholar 

  62. P. Ferenci, T.-M. Scherzer, H. Kerschner, et al., Gastroenterology 135, 1561 (2008). https://doi.org/10.1053/j.gastro.2008.07.072

    Article  CAS  Google Scholar 

  63. P. Tiwari, and K. P. Mishra, Cancer Res. Front. 1, 303 (2015). https://doi.org/10.17980/2015.303

    Article  Google Scholar 

  64. S. Kim, J. Han, J. S. Kim, et al., Anticancer Res. 31, 3767 (2011). https://pubmed.ncbi.nlm.nih.gov/22110198/.

    CAS  Google Scholar 

  65. W. Lu, C. Lin, T. D. King, et al., Cell. Signall. 24, 2291 (2012). https://doi.org/10.1016/j.cellsig.2012.07.009

    Article  CAS  Google Scholar 

  66. S. Mateen, A. Tyagi, C. Agarwal, et al., Mol. Carcinog. 49, 247 (2009). https://doi.org/10.1002/mc.20595

    Article  CAS  Google Scholar 

  67. Y. Zhang, Y. Ge, Y. Chen, et al., Cell Biochem. Funct. 30, 243 (2012). https://doi.org/10.1002/cbf.1842

    Article  CAS  Google Scholar 

  68. W. H. Kil, S. M. Kim, J. E. Lee, et al., Ann. Surg. Treat. Res. 87, 167 (2014). https://doi.org/10.4174/astr.2014.87.4.167

    Article  Google Scholar 

  69. C.-M. Lin, Y.-H. Chen, H.-P. Ma, et al., J. Agric. Food Chem. 60, 12451 (2012). https://doi.org/10.1021/jf300964f

    Article  CAS  Google Scholar 

  70. X. Hou, H. Du, X. Quan, et al., Front. Pharmacol. 9, 21 (2018). https://doi.org/10.3389/fphar.2018.00021

    Article  CAS  Google Scholar 

  71. S. Zhang and M. E. Morris, Pharm. Res. 20, 1184 (2003). https://doi.org/10.1023/a:1025044913766

    Article  CAS  Google Scholar 

  72. S. Dhanalakshmi, P. Agarwal, L. M. Glode, and R. Agarwal, Int. J. Cancer 106, 699 (2003). https://doi.org/10.1002/ijc.11299

    Article  CAS  Google Scholar 

  73. A. K. Tyagi, C. Agarwal, D. C. F. Chan, and R. Agarwal, Oncol. Rep. 11, 493 (2004). https://doi.org/10.3892/or.11.2.493

    Article  CAS  Google Scholar 

  74. C.-H. Liu, C.-C. Lin, W.-C. Hsu, et al., Gut. 66, 1853 (2017). https://doi.org/10.1136/gutjnl-2016-312019

    Article  CAS  Google Scholar 

  75. A. Ghosh, S. Biswas, and T. Ghosh, J. Young Pharm. 3, 205 (2011). https://doi.org/10.4103/0975-1483.83759

    Article  CAS  Google Scholar 

  76. N. Sun, X. Wei, B. Wu, et al., Powder Tech. 182, 72 (2008). https://doi.org/10.1016/j.powtec.2007.05.029

    Article  CAS  Google Scholar 

  77. Z.-B. Zhang, Z.-G. Shen, J.-X. Wang, et al., Int. J. Pharm. 376, 116 (2009). https://doi.org/10.1016/j.ijpharm.2009.04.028

    Article  CAS  Google Scholar 

  78. N. Méndez-Sánchez, M. Dibildox-Martinez, J. Sosa-Noguera, et al., BMC Pharmacol. Toxicol. 20 (1), 5 (2019). https://doi.org/10.1186/s40360-018-0280-8

    Article  Google Scholar 

  79. C. Diaz, J. Guzmán, V. A. Jiménez, and J. B. Alderete, Pharm. Dev. Technol. 23, 689 (2018). https://doi.org/10.1080/10837450.2017.1315134

    Article  CAS  Google Scholar 

  80. J. Yu, Y. Zhu, L. Wang, et al., Acta Pharmacol. Sin. 31, 759 (2010). https://doi.org/10.1038/aps.2010.55

    Article  CAS  Google Scholar 

  81. G.-J. Cui, L.-M. Xu, Y. Zhou, et al., Chem. Eng. J. 222, 512 (2013). https://doi.org/10.1016/j.cej.2013.02.101

    Article  CAS  Google Scholar 

  82. S. S. Nasr, M. M. A. Nasra, H. A. Hazzah, and O. Y. Abdallah, Drug Deliv. Transl. Res. 9, 968 (2019). https://doi.org/10.1007/s13346-019-00640-3

    Article  CAS  Google Scholar 

  83. F.-Q. Li and J.-H. Hu, Chem. Pharm. Bull. (Tokyo) 52, 972 (2004). https://doi.org/10.1248/cpb.52.972

    Article  CAS  Google Scholar 

  84. J. M. Tan, G. Karthivashan, P. Arulselvan, et al., J. Nanomater. 2014, 439873 (2014). https://doi.org/10.1155/2014/439873

    Article  CAS  Google Scholar 

  85. G. Neri, N. Micale, A. Scala, et al., FlatChem. 1, 34 (2017). https://doi.org/10.1016/j.flatc.2016.10.002

    Article  CAS  Google Scholar 

  86. L.-J. Jia, D.-R. Zhang, Z.-Y. Li, et al., Drug Deliv. 17, 11 (2010). https://doi.org/10.3109/10717540903431586

    Article  CAS  Google Scholar 

  87. X. Yan-yu, S. Yun-mei, C. Zhi-peng, and P. Qin-eng, Int. J. Pharm. 319, 162 (2006). https://doi.org/10.1016/j.ijpharm.2006.03.037

    Article  CAS  Google Scholar 

  88. H. Maheshwari, R. Agarwal, C. Patil, and O. P. Katare, Arzneimittelforschung 53, 420 (2011). https://doi.org/10.1055/s-0031-1297130

    Article  Google Scholar 

  89. M. S. El-Samaligy, N. N. Afifi, and E. A. Mahmoud, Int. J. Pharm. 308, 140 (2006). https://doi.org/10.1016/j.ijpharm.2005.11.006

    Article  CAS  Google Scholar 

  90. M. Elmowafy, T. Viitala, H. M. Ibrahim, et al., Eur. J. Pharm. Sci. 50, 161 (2013). https://doi.org/10.1016/j.ejps.2013.06.012

    Article  CAS  Google Scholar 

  91. W. Maryana, H. Rachmawati, and D. Mudhakir, Mater. Today: Proc. 3, 855 (2016). https://doi.org/10.1016/j.matpr.2016.02.019

    Article  Google Scholar 

  92. J.-S. Lee, D. Y. Hong, E. S. Kim, and H. G. Lee, Colloids Surf., B 154, 171 (2017). https://doi.org/10.1016/j.colsurfb.2017.03.004

    Article  CAS  Google Scholar 

  93. C. H. Campos, C. F. Díaz, J. L. Guzmán, et al., Macromol. Chem. Phys. 217, 1712 (2016). https://doi.org/10.1002/macp.201600136

    Article  CAS  Google Scholar 

  94. E. Fazio, A. Scala, S. Grimato, et al., J. Mater. Chem. B 3, 9023 (2015). https://doi.org/10.1039/C5TB01076D

    Article  CAS  Google Scholar 

  95. M. Hajbabaei, J. Baharara, A. Iranbakhsh, and T. Ramezani, Razi J. Med. Sci. 23 (152), 54 (2017).

    Google Scholar 

  96. M. Khalkhali, S. S. Sadighian, K. Rostamizadeh, et al., Nanomed. J. 2, 223 (2015). https://doi.org/10.7508/nmj.2015.03.008

    Article  Google Scholar 

  97. S. A. Staroverov, L. A. Dykman, P. V. Mezhennyi, et al., Sel’skokhoz. Biol. 52, 1206 (2017). https://doi.org/10.15389/agrobiology.2017.6.1206rus

    Article  Google Scholar 

  98. J. Reineke, M. Durymanov, and A. Permyakova, “Hepatoprotective particles and systems and methods of use thereof,” US Patent No. 2019/0015335 A1.

  99. K. Hayashi, T. Maruhashi, W. Sakamoto, and T. Yogo, Adv. Funct. Mater. 28, 1706332 (2018). https://doi.org/10.1002/adfm.201870086

    Article  CAS  Google Scholar 

  100. Y. Liu, Y. Zhao, and X. Chen, Theranostics 9, 3122 (2019). https://doi.org/10.7150/thno.31918

    Article  CAS  Google Scholar 

  101. Y. Wang, D. Zhang, Z. Liu, et al., Nanotechnology 21, 155104 (2010). https://doi.org/10.1088/0957-4484/21/15/155104

    Article  CAS  Google Scholar 

  102. Y. Wang, L. Wang, Z. Liu, et al., J. Biomed. Nanotechnol. 8, 760 (2012). https://doi.org/10.1166/jbn.2012.1444

    Article  CAS  Google Scholar 

  103. D. Xu, R. Ni, W. Sun, et al., Drug Dev. Ind. Pharm. 41, 552 (2015). https://doi.org/10.3109/03639045.2014.884123

    Article  CAS  Google Scholar 

  104. Y. Liu, Y. Wang, and J. Zhao, Int. J. Biol. Macromol. 124, 667 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.258

    Article  CAS  Google Scholar 

  105. K. Luo, X. Li, L. Yang, et al., Chin. Tradit. Patent Med. 38 (5) (2016).

  106. K. Y. Yang, D. H. Hwang, A. M. Yousaf, et al., Int. J. Nanomed. 8, 3333 (2013). https://doi.org/10.2147/IJN.S50683

    Article  CAS  Google Scholar 

  107. E. B. Souto and R. H. Müller, Drug Delivery, Vol. 197 of Handbook of Experimental Pharmacology (Springer, Berlin, 2010), p. 115. https://doi.org/10.1007/978-3-642-00477-3_4

  108. W. Mehnert and K. Mäder, Adv. Drug Deliv. Rev. 64, S83 (2012). https://doi.org/10.1016/j.addr.2012.09.021

    Article  Google Scholar 

  109. S. Khan, S. Baboota, J. Ali, et al., Int. J. Pharm. Invest. 5, 182 (2015). https://doi.org/10.4103/2230-973X.167661

    Article  CAS  Google Scholar 

  110. E. Fahy, S. Subramaniam, H. A. Brown, et al., J. Lipid Res. 46, 839 (2005). https://doi.org/10.1194/jlr.E400004-JLR200

    Article  CAS  Google Scholar 

  111. J. He, S. Hou, W. Lu, et al., J. Biomed. Nanotechnol. 3, 195 (2007). https://doi.org/10.1166/jbn.2007.024

    Article  CAS  Google Scholar 

  112. M. Shangguan, Y. Lu, J. Qi, et al., J. Biomater. Appl. 28, 887 (2014). https://doi.org/10.1177/0885328213485141

    Article  CAS  Google Scholar 

  113. K. Uekama, F. Hirayama, and T. Irie, Chem. Rev. 98, 2045 (1998). https://doi.org/10.1021/cr970025p

    Article  CAS  Google Scholar 

  114. M. Arcari, A. Brambilla, A. Brandt, et al., Boll. Chim. Farm. 131, 205 (1992). https://pubmed.ncbi.nlm.nih.gov/1445687/.

    CAS  Google Scholar 

  115. G. M. Pavlov, E. V. Korneeva, N. A. Smolina, and U. S. Schubert, Eur. Biophys. J. 39, 371 (2010). https://doi.org/10.1007/s00249-008-0394-9

    Article  CAS  Google Scholar 

  116. I. L. Nunes and A. Z. Mercadante, Braz. Arch. Biol. Technol. 50, 893 (2007). https://doi.org/10.1590/S1516-89132007000500018

    Article  CAS  Google Scholar 

  117. J.-Y. Chun, S.-K. You, M.-Y. Lee, et al., Int. J. Food Eng. 8 (2), 17 (2012). https://doi.org/10.1515/1556-3758.2590

    Article  CAS  Google Scholar 

  118. L. E. Hill, C. Gomes, and T. M. Taylor, LWT—Food Sci. Technol. 51, 86 (2013). https://doi.org/10.1016/j.lwt.2012.11.011

    Article  CAS  Google Scholar 

  119. T. F. Kellici, D. Ntountaniotis, G. Leonis, et al., Mol. Pharm. 12, 954 (2015). https://doi.org/10.1021/mp5008053

    Article  CAS  Google Scholar 

  120. S. Gharbia, C. Balta, H. Herman, et al., Front. Pharmacol. 9, 883 (2018). https://doi.org/10.3389/fphar.2018.00883

    Article  CAS  Google Scholar 

  121. M. K. Das and B. Kalita, J. Appl. Pharm. Sci. 4 (10), 51 (2014). https://doi.org/10.7324/JAPS.2014.401010

    Article  Google Scholar 

  122. N. Karimi, B. Ghanbarzadeh, H. Hamishehkar, et al., Appl. Food Biotechnol. 2 (3), 17 (2015). https://doi.org/10.22037/afb.v2i3.8832

    Article  CAS  Google Scholar 

  123. Y. Song, J. Zhuang, J. Guo, et al., Pharmazie 63), 35 (2008). https://pubmed.ncbi.nlm.nih.gov/18271301/.

  124. X. Yanyu, S. Yunmei, C. Zhipeng, and P. Qineng, Int. J. Pharm. 307, 77 (2006). https://doi.org/10.1016/j.ijpharm.2005.10.001

    Article  CAS  Google Scholar 

  125. N. Barzaghi, F. Crema, G. Gatti, et al., Eur. J. Drug Metab. Pharmacokinet. 15, 333 (1990). https://doi.org/10.1007/BF03190223

    Article  CAS  Google Scholar 

  126. S. Moscarella, A. Giusti, F. Marra, et al., Curr. Ther. Res. 53, 98 (1993). https://doi.org/10.1016/S0011-393X(05)80160-2

    Article  Google Scholar 

  127. P. Kidd and K. Head, Altern. Med. Rev. 10, 193 (2005). https://pubmed.ncbi.nlm.nih.gov/16164374/.

    Google Scholar 

  128. W. Maryana, A. Rahma, D. Mudhakir, and H. Rachmawati, J. Biomimet. Biomater. Biomed. Eng. 25, 54 (2015). https://doi.org/10.4028/www.scientific.net/JBBBE.25.54

  129. C. R. Filburn, R. Kettenacker, and D. W. Griffin, J. Vet. Pharmacol. Ther. 30, 132 (2007). https://doi.org/10.1111/j.1365-2885.2007.00834.x

    Article  CAS  Google Scholar 

  130. R. Angelico, A. Ceglie, P. Sacco, et al., Int. J. Pharm. 471, 173 (2014). https://doi.org/10.1016/j.ijpharm.2014.05.026

    Article  CAS  Google Scholar 

  131. X. Huang, Z. Wu, W. Gao, et al., Drug Dev. Ind. Pharm. 37, 419 (2011). https://doi.org/10.3109/03639045.2010.518150

    Article  CAS  Google Scholar 

  132. R. Jevprasesphant, J. Penny, R. Jalal, et al., Int. J. Pharm. 252, 263 (2003). https://doi.org/10.1016/S0378-5173(02)00623-3

    Article  CAS  Google Scholar 

  133. W. Wang, W. Xiong, J. Wan, et al., Nanotechnology 20, 105103 (2009). https://doi.org/10.1088/0957-4484/20/10/105103

    Article  CAS  Google Scholar 

  134. L. F. Barraza, V. A. Jiménez, and J. B. Alderete, Macromol. Chem. Phys. 217, 605 (2016). https://doi.org/10.1002/macp.201500342

    Article  CAS  Google Scholar 

  135. P. K. Shetty, J. Manikkath, K. Tupally, et al., AAPS Pharm. Sci. Tech. 18, 2346 (2017). https://doi.org/10.1208/s12249-017-0718-0

    Article  CAS  Google Scholar 

  136. B. Devarakonda, D. P. Otto, A. Judefeind, et al., Int. J. Pharm. 345, 142 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.039

    Article  CAS  Google Scholar 

  137. W. Yao, K. Sun, H. Mu, et al., Drug Dev. Ind. Pharm. 36, 1027 (2010). https://doi.org/10.3109/03639041003610799

    Article  CAS  Google Scholar 

  138. S. Sadekar and H. Ghandehari, Adv. Drug Deliv. Rev. 64, 571 (2012). https://doi.org/10.1016/j.addr.2011.09.010

    Article  CAS  Google Scholar 

  139. V. Panapisal, Charoensri, and S. A. Tantituvanont, AAPS Pharm. Sci. Tech. 13, 389 (2012). https://doi.org/10.1208/s12249-012-9762-y

    Article  CAS  Google Scholar 

  140. S. Abrol, A. Trehan, and O. P. Katare, Drug Deliv. 11, 185 (2004). https://doi.org/10.1080/10717540490433958

    Article  CAS  Google Scholar 

  141. Y. Wei, X. Ye, X. Shang, et al., Colloid. Surf. Physicochem. Eng. Asp. 396, 22 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.025

    Article  CAS  Google Scholar 

  142. B. Singh, S. Bopadhyay, R. Kapil, et al., Crit. Rev. Ther. Drug Carrier Syst. 26, 427 (2009). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10

    Article  CAS  Google Scholar 

  143. T. Yi, C. Liu, J. Zhang, et al., Eur. J. Pharm. Sci. 96, 420 (2017). https://doi.org/10.1016/j.ejps.2016.08.047

    Article  CAS  Google Scholar 

  144. A. Alexer, Ajazuddin, R. J. Patel, et al., J. Control. Release 241, 110 (2016). https://doi.org/10.1016/j.jconrel.2016.09.017

    Article  CAS  Google Scholar 

  145. P. P. Desai, A. A. Date, and V. B. Patravale, Drug Discov. Today Tech. 9 (2), e87 (2012). https://doi.org/10.1016/j.ddtec.2011.12.001

    Article  CAS  Google Scholar 

  146. A. E. El-Nahas, A. N. Allam, D. A. Abdelmonsif, and A. H. El-Kamel, AAPS Pharm. Sci. Tech. 18, 3076 (2017). https://doi.org/10.1208/s12249-017-0799-9

    Article  CAS  Google Scholar 

  147. C. R. Bonepally, S. J. Gey, K. Bommineni, et al., Trop. J. Pharm. Res. 12, 1 (2013). https://doi.org/10.4314/tjpr.v12i1.1

    Article  CAS  Google Scholar 

  148. X.-L. Guan, S.-Z. Zhao, R.-J. Hou, et al., Int. J. Clin. Exp. Med. 8, 17406 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694231/.

    CAS  Google Scholar 

  149. S. Das, P. Roy, R. Pal, et al., PloS One 9 (7), e101818 (2014). https://doi.org/10.1371/journal.pone.0101818

    Article  CAS  Google Scholar 

  150. O. G. Tereshchenko, E. D. Nikolskaya, O. A. Zhunina, V. V. Zavarzina, N. G. Yabbarov, M. V. Fomicheva, E. V. Zubkov, M. B. Sokol, N. V. Gukasova, and E. S. Severin, Russ. Chem. Bul. 67, 2290 (2018). https://doi.org/10.1007/s11172-018-2372-4

    Article  CAS  Google Scholar 

  151. I. M. El-Sherbiny, M. Abdel-Mogib, A.-A. M. Dawidar, et al., Carbohydr. Polym. 83, 1345 (2011). https://doi.org/10.1016/j.carbpol.2010.09.055

    Article  CAS  Google Scholar 

  152. D. Pooja, D. J. B. Bikkina, H. Kulhari, et al., Int. J. Biol. Macromol. 69, 267 (2014). https://doi.org/10.1016/j.ijbiomac.2014.05.035

    Article  CAS  Google Scholar 

  153. M. H. Nguyen, H. Yu, B. Dong, and K. Hadinoto, Eur. J. Pharm. Sci. 89, 163 (2016). https://doi.org/10.1016/j.ejps.2016.04.036

    Article  CAS  Google Scholar 

  154. N. V. Gukasova, S. L. Kuznetsov, I. A. Tubasheva, et al., “Method of producing a polymer-containing silybin composition,” RF Patent No. 2716706 (2019).

  155. G. A. Islan, S. Das, M. L. Cacicedo, et al., J. Drug Deliv. Sci. Tech. 53, 101181 (2019). https://doi.org/10.1016/j.jddst.2019.101181

    Article  CAS  Google Scholar 

  156. N. Kabir, H. Ali, M. Ateeq, et al., RSC Adv. 4, 9012 (2014). https://doi.org/10.1039/C3RA46093B

    Article  CAS  Google Scholar 

  157. W. Cai, J. Wang, C. Chu, et al., Adv. Sci. 6, 1801526 (2019). https://doi.org/10.1002/advs.201801526

    Article  CAS  Google Scholar 

  158. Q. Nawaz, M. A. Fuentes, V. Tharmalingam, et al., SSRN J. (2019).

  159. Y. Zhu, M. Wang, Y. Zhang, et al., AAPS Pharm. Sci. Tech. 17, 1232 (2016). https://doi.org/10.1208/s12249-015-0460-4

    Article  CAS  Google Scholar 

  160. M. Goldberg, R. Langer, and X. Jia, J. Biomater. Sci. Polym. Ed. 18, 241 (2007). https://doi.org/10.1163/156856207779996931

    Article  CAS  Google Scholar 

  161. X. Li, L. Wang, Y. Fan, et al., J. Nanomater. 2012, 548389 (2012). https://doi.org/10.1155/2012/548389

    Article  CAS  Google Scholar 

  162. M. F. Horst, V. Lassalle, and M. L. Ferreira, Front. Environ. Sci. Eng. 9, 746 (2015). https://doi.org/10.1007/s11783-015-0814-x

    Article  CAS  Google Scholar 

  163. D. S. Keerthana, K. Namratha, K. Byrappa, and H. S. Yathirajan, J. Magn. Magn. Mater. 378, 551 (2015). https://doi.org/10.1016/j.jmmm.2014.10.176

    Article  CAS  Google Scholar 

  164. C. C. Torres, C. H. Campos, C. Diáz, et al., Mater. Sci. Eng. C 65, 164 (2016). https://doi.org/10.1016/j.msec.2016.03.104

    Article  CAS  Google Scholar 

  165. M. Ma, Y. Cheng, Z. Xu, et al., Eur. J. Med. Chem. 42, 93 (2007). https://doi.org/10.1016/j.ejmech.2006.07.015

    Article  CAS  Google Scholar 

  166. H. Hui, F. Xiao-dong, and C. Zhong-lin, Polymer 46, 9514 (2005). https://doi.org/10.1016/j.polymer.2005.07.034

    Article  CAS  Google Scholar 

  167. G. Chávez, C. H. Campos, V. A. Jiménez, et al., J. Mater. Sci. 52, 9269 (2017). https://doi.org/10.1007/s10853-017-1140-4

    Article  CAS  Google Scholar 

  168. S. Xu, B. Yin, J. Guo, and C. Wang, J. Mater. Chem. B 1, 4079 (2013). https://doi.org/10.1039/c3tb20238k

    Article  CAS  Google Scholar 

  169. E. K. Efthimiadou, C. Tapeinos, A. Chatzipavlidis, et al., Int. J. Pharm. 461, 54 (2014). https://doi.org/10.1016/j.ijpharm.2013.11.037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Poltavets.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poltavets, Y.I., Kuznetsov, S.L., Tubasheva, I.A. et al. Nano- and Microsized Forms of Silymarin and Silybin. Nanotechnol Russia 16, 115–137 (2021). https://doi.org/10.1134/S2635167621020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621020105

Navigation