Skip to main content
Log in

Acousto-Optical Devices Based on Biaxial Crystals of Rhombic Syngony

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A detailed analysis of the acousto-optical effect in biaxial crystals is performed using the examples of thallium tetratioarsenate (Tl3AsS4) and iodic acid (α-HIO3) crystals of rhombic syngony. The optimum cross sections of the crystals are determined for such acousto-optical devices as deflectors and filters. The prospects for using thallium tetratioarsenate crystal to create high-performance acousto-optical deflectors and quasi-collinear filters in the near- and mid-IR ranges are demonstrated. It is established that the spectral resolution of acousto-optical filters based on this variant of diffraction is comparable to the resolution of quasi-collinear filters with the same length of acousto-optical interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Balakshy, V.I., Parygin, V.N., and Chirkov, L.E., Fizicheskie osnovy akustooptiki (Physical Foundations of Optoacoustics), Moscow: Radio Svyaz’, 1985.

  2. Xu, J. and Stroud, R., Acousto-Optic Devices: Principles, Design, and Applications, New York: Wiley, 1992.

    Google Scholar 

  3. Shaskol’skaya, M.P., Akusticheskie kristally (Acoustic Crystals), Moscow: Nauka, 1982.

  4. Polikarpova, N.V. and Voloshinov, V.B., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 10, p. 1274.

    Article  Google Scholar 

  5. Balakshy, V.I. and Voloshin, A.S., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 10, p. 1310.

    Article  Google Scholar 

  6. Polikarpova, N.V., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 6, p. 662.

    Article  Google Scholar 

  7. Pozhar, V.E. and Pustovoit, V.I., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 10, p. 1221.

    Article  Google Scholar 

  8. Pisarevskii, Yu.V. and Sil’vestrova, I.M., Kristallografiya, 1976, vol. 18, no. 5, p. 1003.

    Google Scholar 

  9. Bogdanov, S.V. and Sapozhnikov, V.K., Avtometriya, 1989, no. 5, p. 3.

  10. Balakshy, V.I. and Kupreychik, M.I., Phys. Proc., 2015, vol. 70, p. 758.

    Article  ADS  Google Scholar 

  11. Ohmachi, Y. and Uchida, N., J. Appl. Phys., 1971, vol. 42, p. 521.

    Article  ADS  Google Scholar 

  12. Mil’kov, M.G., Volnyanskii, M.D., Antonenko, A.M., and Voloshinov, V.B., Acoust. Phys., 2012, vol. 58, no. 2, p. 172.

    Article  ADS  Google Scholar 

  13. Mazur, M.M., Velikovskiy, D.Yu., Mazur, L.I., et al., Ultrasonics, 2014, vol. 54, no. 5, p. 1311.

    Article  Google Scholar 

  14. Martynyuk-Lototska, I., Mys, O., Zapeka, B., et al., Appl. Opt., 2014, vol. 53, no. 10, p. B103.

    Article  Google Scholar 

  15. Buryy, O., Andrushchak, N., Ratych, A., et al., Appl. Opt., 2017, vol. 56, no. 7, p. 1839.

    Google Scholar 

  16. Roland, G.W., Gottlieb, M., and Feichtner, J.D., Appl. Phys. Lett., 1972, vol. 21, no. 2, p. 52.

    Article  ADS  Google Scholar 

  17. Goutzoulis, A., Gottlieb, M., Davies, K., and Kun, Z., Appl. Opt., 1985, vol. 24, no. 23, p. 4183.

    Article  ADS  Google Scholar 

  18. Mytsyk, B., Kryvyy, T., Demyanyshyn, N., et al., Appl. Opt., 2018, vol. 57, no. 14, p. 3796.

    ADS  Google Scholar 

  19. Levin, V.M., Morokov, E.S., and Petronyuk, Y.S., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 8, p. 950.

    Article  Google Scholar 

  20. Balakshy, V.I., Magdich, L.N., and Mantsevich, S.N., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 5, p. 459.

    Article  MathSciNet  Google Scholar 

  21. Pinnow, D.A. and Dixon, R.W., Appl. Phys. Lett., 1968, vol. 13, no. 4, p. 156.

    Article  ADS  Google Scholar 

  22. Kupreychik, M.I. and Balakshy, V.I., Opt. Spectrosc., 2017, vol. 123, no. 3, p. 463.

    Article  ADS  Google Scholar 

  23. Kupreychik, M.I. and Balakshy, V.I., Appl. Opt., 2018, vol. 57, no. 20, p. 5549.

    Article  ADS  Google Scholar 

  24. Kupreychik, M.I. and Balakshy, V.I., Proc. SPIE, 2019, vol. 11210, 112100O.

    Google Scholar 

  25. Kulakova, L.A. and Lutetskiy, A.V., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 5, p. 481.

    Article  Google Scholar 

  26. Harris, S.E., Nieh, S.T.K., and Fiegelson, R.S., Appl. Phys. Lett., 1970, vol. 17, no. 5, p. 223.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Science Foundation, project no. 19-12-00072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Balakshy.

Additional information

Translated by S. Rostovtseva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakshy, V.I., Kupreychik, M.I., Mantsevich, S.N. et al. Acousto-Optical Devices Based on Biaxial Crystals of Rhombic Syngony. Bull. Russ. Acad. Sci. Phys. 85, 612–616 (2021). https://doi.org/10.3103/S1062873821060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821060046

Navigation