Semin Respir Crit Care Med 2021; 42(04): 556-566
DOI: 10.1055/s-0041-1730947
Review Article

Aspergillus-Associated Endophenotypes in Bronchiectasis

Tavleen Kaur Jaggi
1   Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
,
Soo Kai Ter
1   Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
,
2   Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
3   Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
,
1   Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
› Author Affiliations
Funding This research is supported by the Singapore Ministry of Health’s National Medical Research Council under its Clinician-Scientist Individual Research Grant (MOH-000141) (S.H.C) and the NTU Integrated Medical, Biological and Environmental Life Sciences (NIMBELS) [NIM/03/2018] (S.H.C).

Abstract

Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence “endophenotypes” in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.



Publication History

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Maselli DJ, Amalakuhan B, Keyt H, Diaz AA. Suspecting non-cystic fibrosis bronchiectasis: what the busy primary care clinician needs to know. Int J Clin Pract 2017; 71 (02) e12924
  • 2 Lonni S, Chalmers JD, Goeminne PC. et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann Am Thorac Soc 2015; 12 (12) 1764-1770
  • 3 Richardson H, Dicker AJ, Barclay H, Chalmers JD. The microbiome in bronchiectasis. Eur Respir Rev 2019; 28 (153) 190048
  • 4 Richardson M, Bowyer P, Sabino R. The human lung and Aspergillus: you are what you breathe in?. Med Mycol 2019; 57 (Suppl. 02) S145-S154
  • 5 Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018; 392 (10150): 880-890
  • 6 Bhatia S, Fei M, Yarlagadda M. et al. Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS One 2011; 6 (01) e15943-e15943
  • 7 Chotirmall SH, Mirkovic B, Lavelle GM, McElvaney NG. Immunoevasive Aspergillus virulence factors. Mycopathologia 2014; 178 (5-6): 363-370
  • 8 McCormick A, Loeffler J, Ebel F. Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell Microbiol 2010; 12 (11) 1535-1543
  • 9 Park SJ, Mehrad B. Innate immunity to Aspergillus species. Clin Microbiol Rev 2009; 22 (04) 535-551
  • 10 Chotirmall SH, Al-Alawi M, Mirkovic B. et al. Aspergillus-associated airway disease, inflammation, and the innate immune response. BioMed Res Int 2013; 2013: 723129
  • 11 Máiz L, Vendrell M, Olveira C, Girón R, Nieto R, Martínez-García MÁ. Prevalence and factors associated with isolation of Aspergillus and Candida from sputum in patients with non-cystic fibrosis bronchiectasis. Respiration 2015; 89 (05) 396-403
  • 12 Chotirmall SH, Martin-Gomez MT. Aspergillus species in bronchiectasis: challenges in the cystic fibrosis and non-cystic fibrosis airways. Mycopathologia 2018; 183 (01) 45-59
  • 13 De Soyza A, Aliberti S. Bronchiectasis and Aspergillus: how are they linked?. Med Mycol 2017; 55 (01) 69-81
  • 14 Máiz L, Nieto R, Cantón R, Gómez G de la Pedrosa E, Martinez-García MÁ. Fungi in Bronchiectasis: a concise review. Int J Mol Sci 2018; 19 (01) 142
  • 15 Kim ST, Choi JH, Jeon HG, Cha HE, Hwang YJ, Chung YS. Comparison between polymerase chain reaction and fungal culture for the detection of fungi in patients with chronic sinusitis and normal controls. Acta Otolaryngol 2005; 125 (01) 72-75
  • 16 Chandrasekaran R, Mac Aogáin M, Chalmers JD, Elborn SJ, Chotirmall SH. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm Med 2018; 18 (01) 83
  • 17 Qi Q, Wang W, Li T, Zhang Y, Li Y. Aetiology and clinical characteristics of patients with bronchiectasis in a Chinese Han population: a prospective study. Respirology 2015; 20 (06) 917-924
  • 18 Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax 2015; 70 (03) 270-277
  • 19 Kunst H, Wickremasinghe M, Wells A, Wilson R. Nontuberculous mycobacterial disease and Aspergillus-related lung disease in bronchiectasis. Eur Respir J 2006; 28 (02) 352-357
  • 20 Warris A. The biology of pulmonary aspergillus infections. J Infect 2014; 69 (Suppl. 01) S36-S41
  • 21 Cramer RA, Rivera A, Hohl TM. Immune responses against Aspergillus fumigatus: what have we learned?. Curr Opin Infect Dis 2011; 24 (04) 315-322
  • 22 Hohl TM. Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities. Curr Opin Infect Dis 2017; 30 (04) 364-371
  • 23 Murray MA, Chotirmall SH. The impact of immunosenescence on pulmonary disease. Mediators Inflamm 2015; 2015: 692546
  • 24 Mac Aogáin M, Tiew PY, Lim AYH. et al. Distinct “immunoallertypes” of disease and high frequencies of sensitization in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2019; 199 (07) 842-853
  • 25 Bahous J, Malo JL, Paquin R, Cartier A, Vyas P, Longbottom JL. Allergic bronchopulmonary aspergillosis and sensitization to Aspergillus fumigatus in chronic bronchiectasis in adults. Clin Allergy 1985; 15 (06) 571-579
  • 26 Becker KL, Gresnigt MS, Smeekens SP. et al. Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin Exp Allergy 2015; 45 (02) 423-437
  • 27 Kumar R, Chopra D. Evaluation of allergic bronchopulmonary aspergillosis in patients with and without central bronchiectasis. J Asthma 2002; 39 (06) 473-477
  • 28 Greenberger PA, Miller TP, Roberts M, Smith LL. Allergic bronchopulmonary aspergillosis in patients with and without evidence of bronchiectasis. Ann Allergy 1993; 70 (04) 333-338
  • 29 Wark PA, Saltos N, Simpson J, Slater S, Hensley MJ, Gibson PG. Induced sputum eosinophils and neutrophils and bronchiectasis severity in allergic bronchopulmonary aspergillosis. Eur Respir J 2000; 16 (06) 1095-1101
  • 30 Tashiro T, Izumikawa K, Tashiro M. et al. Diagnostic significance of Aspergillus species isolated from respiratory samples in an adult pneumology ward. Med Mycol 2011; 49 (06) 581-587
  • 31 Zoumot Z, Boutou AK, Gill SS. et al. Mycobacterium avium complex infection in non-cystic fibrosis bronchiectasis. Respirology 2014; 19 (05) 714-722
  • 32 Chabi ML, Goracci A, Roche N, Paugam A, Lupo A, Revel MP. Pulmonary aspergillosis. Diagn Interv Imaging 2015; 96 (05) 435-442
  • 33 Everaerts S, Lagrou K, Vermeersch K, Dupont LJ, Vanaudenaerde BM, Janssens W. Aspergillus fumigatus detection and risk factors in patients with copd-bronchiectasis overlap. Int J Mol Sci 2018; 19 (02) 523
  • 34 Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev 2011; 20 (121) 156-174
  • 35 Shah A, Panjabi C. Allergic aspergillosis of the respiratory tract. Eur Respir Rev 2014; 23 (131) 8-29
  • 36 Knutsen AP, Bush RK, Demain JG. et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 2012; 129 (02) 280-291 , quiz 292–293
  • 37 Spiro SG, Silvestri GA, Agustí A. Clinical Respiratory Medicine. Philadelphia, PA: Elsevier/Saunders; 2012
  • 38 Oguma T, Asano K, Tomomatsu K. et al. Induction of mucin and MUC5AC expression by the protease activity of Aspergillus fumigatus in airway epithelial cells. J Immunol 2011; 187 (02) 999-1005
  • 39 Page ID, Richardson MD, Denning DW. Comparison of six Aspergillus-specific IgG assays for the diagnosis of chronic pulmonary aspergillosis (CPA). J Infect 2016; 72 (02) 240-249
  • 40 Agarwal R, Aggarwal AN, Garg M, Saikia B, Chakrabarti A. Cut-off values of serum IgE (total and A. fumigatus -specific) and eosinophil count in differentiating allergic bronchopulmonary aspergillosis from asthma. Mycoses 2014; 57 (11) 659-663
  • 41 Suarez-Cuartin G, Chalmers JD, Sibila O. Diagnostic challenges of bronchiectasis. Respir Med 2016; 116: 70-77
  • 42 Kumar R. Mild, moderate, and severe forms of allergic bronchopulmonary aspergillosis: a clinical and serologic evaluation. Chest 2003; 124 (03) 890-892
  • 43 Patel AR, Patel AR, Singh S, Singh S, Khawaja I. Diagnosing allergic bronchopulmonary Aspergillosis: a review. Cureus 2019; 11 (04) e4550
  • 44 Goussault H, Salvator H, Catherinot E. et al. Primary immunodeficiency-related bronchiectasis in adults: comparison with bronchiectasis of other etiologies in a French reference center. Respir Res 2019; 20 (01) 275
  • 45 Coulter TI, Devlin L, Downey D, Elborn JS, Edgar JDM. Immunodeficiency in Bronchiectasis. In: Chalmers J, Polverino E, Aliberti S. eds. Bronchiectasis: The EMBARC Manual. Cham: Springer International Publishing; 2018: 77-100
  • 46 Denning DW, Cadranel J, Beigelman-Aubry C. et al; European Society for Clinical Microbiology and Infectious Diseases and European Respiratory Society. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J 2016; 47 (01) 45-68
  • 47 Tunnicliffe G, Schomberg L, Walsh S, Tinwell B, Harrison T, Chua F. Airway and parenchymal manifestations of pulmonary aspergillosis. Respir Med 2013; 107 (08) 1113-1123
  • 48 Denning DW, Riniotis K, Dobrashian R, Sambatakou H. Chronic cavitary and fibrosing pulmonary and pleural aspergillosis: case series, proposed nomenclature change, and review. Clin Infect Dis 2003; 37 (Suppl. 03) S265-S280
  • 49 Jhun BW, Jeon K, Eom JS. et al. Clinical characteristics and treatment outcomes of chronic pulmonary aspergillosis. Med Mycol 2013; 51 (08) 811-817
  • 50 Abers MS, Ghebremichael MS, Timmons AK, Warren HS, Poznansky MC, Vyas JM. A critical reappraisal of prolonged neutropenia as a risk factor for invasive pulmonary Aspergillosis. Open Forum Infect Dis 2016; 3 (01) ofw036-ofw036
  • 51 Farmand S, Sundin M. Hyper-IgE syndromes: recent advances in pathogenesis, diagnostics and clinical care. Curr Opin Hematol 2015; 22 (01) 12-22
  • 52 Henriet S, Verweij PE, Holland SM, Warris A. Invasive fungal infections in patients with chronic granulomatous disease. In: Curtis N, Finn A, Pollard AJ. eds. Hot Topics in Infection and Immunity in Children IX. New York, NY: Springer New York; 2013: 27-55
  • 53 Bassiri-Jahromi S, Doostkam A. Fungal infection and increased mortality in patients with chronic granulomatous disease. J Mycol Med 2012; 22 (01) 52-57
  • 54 Chrdle A, Mustakim S, Bright-Thomas RJ, Baxter CG, Felton T, Denning DW. Aspergillus bronchitis without significant immunocompromise. Ann N Y Acad Sci 2012; 1272 (01) 73-85
  • 55 Cho BH, Oh Y, Kang ES. et al. Aspergillus tracheobronchitis in a mild immunocompromised host. Tuberc Respir Dis (Seoul) 2014; 77 (05) 223-226
  • 56 Panchabhai TS, Bandyopadhyay D, Alraiyes AH, Mehta AC, Almeida FAA. A 60-year-old woman with cough, dyspnea, and atelectasis 19 years after liver transplant. Chest 2015; 148 (04) e122-e125
  • 57 Bongomin F. Post-tuberculosis chronic pulmonary aspergillosis: an emerging public health concern. PLoS Pathog 2020; 16 (08) e1008742
  • 58 Hurst JR, Elborn JS, De Soyza A. BRONCH-UK Consortium. COPD-bronchiectasis overlap syndrome. Eur Respir J 2015; 45 (02) 310-313
  • 59 Poh TY, Mac Aogáin M, Chan AK. et al. Understanding COPD-overlap syndromes. Expert Rev Respir Med 2017; 11 (04) 285-298
  • 60 Porsbjerg C, Menzies-Gow A. Co-morbidities in severe asthma: clinical impact and management. Respirology 2017; 22 (04) 651-661
  • 61 Fairs A, Agbetile J, Hargadon B. et al. IgE sensitization to Aspergillus fumigatus is associated with reduced lung function in asthma. Am J Respir Crit Care Med 2010; 182 (11) 1362-1368
  • 62 Menzies D, Holmes L, McCumesky G, Prys-Picard C, Niven R. Aspergillus sensitization is associated with airflow limitation and bronchiectasis in severe asthma. Allergy 2011; 66 (05) 679-685
  • 63 Pasteur MC, Bilton D, Hill AT. British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax 2010; 65 (Suppl. 01) i1-i58
  • 64 Quint JK, Millett ER, Joshi M. et al. Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study. Eur Respir J 2016; 47 (01) 186-193
  • 65 Patel IS, Vlahos I, Wilkinson TM. et al. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170 (04) 400-407
  • 66 Du Q, Jin J, Liu X, Sun Y. Bronchiectasis as a comorbidity of chronic obstructive pulmonary disease: a systematic review and meta-analysis. PLoS One 2016; 11 (03) e0150532
  • 67 Martínez-García MA, de la Rosa Carrillo D, Soler-Cataluña JJ. et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187 (08) 823-831
  • 68 McDonnell MJ, Aliberti S, Goeminne PC. et al. Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study. Lancet Respir Med 2016; 4 (12) 969-979
  • 69 Everaerts S, Lagrou K, Dubbeldam A. et al. Sensitization to Aspergillus fumigatus as a risk factor for bronchiectasis in COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 2629-2638
  • 70 Safirstein BH, D'Souza MF, Simon G, Tai EH, Pepys J. Five-year follow-up of allergic bronchopulmonary aspergillosis. Am Rev Respir Dis 1973; 108 (03) 450-459
  • 71 Israel RH, Poe RH, Bomba PA, Gross RA. The rapid development of an aspergilloma secondary to allergic bronchopulmonary aspergillosis. Am J Med Sci 1980; 280 (01) 41-44
  • 72 Agarwal R, Aggarwal AN, Garg M, Saikia B, Gupta D, Chakrabarti A. Allergic bronchopulmonary aspergillosis with aspergilloma: an immunologically severe disease with poor outcome. Mycopathologia 2012; 174 (03) 193-201
  • 73 Maturu VN, Agarwal R. Acute invasive pulmonary aspergillosis complicating allergic bronchopulmonary aspergillosis: case report and systematic review. Mycopathologia 2015; 180 (3-4): 209-215
  • 74 Burgos A, Zaoutis TE, Dvorak CC. et al. Pediatric invasive aspergillosis: a multicenter retrospective analysis of 139 contemporary cases. Pediatrics 2008; 121 (05) e1286-e1294
  • 75 Henriet SS, Verweij PE, Warris A. Aspergillus nidulans and chronic granulomatous disease: a unique host-pathogen interaction. J Infect Dis 2012; 206 (07) 1128-1137
  • 76 Hoshino H, Tagaki S, Kon H. et al. Allergic bronchopulmonary aspergillosis due to Aspergillus niger without bronchial asthma. Respiration 1999; 66 (04) 369-372
  • 77 Ishiguro T, Takayanagi N, Kagiyama N, Shimizu Y, Yanagisawa T, Sugita Y. Clinical characteristics of biopsy-proven allergic bronchopulmonary mycosis: variety in causative fungi and laboratory findings. Intern Med 2014; 53 (13) 1407-1411
  • 78 Oshima M, Soda H, Oda H, Watanabe A. [A case of allergic bronchopulmonary aspergillosis caused by Aspergillus terreus]. Nihon Kyobu Shikkan Gakkai Zasshi 1997; 35 (12) 1418-1424
  • 79 Tillie-Leblond I, Tonnel AB. Allergic bronchopulmonary aspergillosis. Allergy 2005; 60 (08) 1004-1013
  • 80 Yamamoto K, Abe M, Inoue Y, Yokoyama A, Kohno N, Hiwada K. [Development of infection with Aspergillus flavus in woman being treated for allergic pulmonary Aspergillosis caused by Aspergillus fumigatus]. Nihon Kyobu Shikkan Gakkai Zasshi 1995; 33 (10) 1099-1104
  • 81 Gautier M, Normand AC, L'Ollivier C. et al. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease. Med Mycol 2016; 54 (05) 459-470
  • 82 Mortensen KL, Johansen HK, Fuursted K. et al. A prospective survey of Aspergillus spp. in respiratory tract samples: prevalence, clinical impact and antifungal susceptibility. Eur J Clin Microbiol Infect Dis 2011; 30 (11) 1355-1363
  • 83 Chakrabarti A, Sethi S, Raman DS, Behera D. Eight-year study of allergic bronchopulmonary aspergillosis in an Indian teaching hospital. Mycoses 2002; 45 (08) 295-299
  • 84 Mac Aogáin M, Chandrasekaran R, Lim AYH. et al. Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB study. Eur Respir J 2018; 52 (01) 1800766
  • 85 Chowdhary A, Agarwal K, Kathuria S, Gaur SN, Randhawa HS, Meis JF. Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 2014; 40 (01) 30-48
  • 86 Nicolaou N, Siddique N, Custovic A. Allergic disease in urban and rural populations: increasing prevalence with increasing urbanization. Allergy 2005; 60 (11) 1357-1360
  • 87 Eguiluz-Gracia I, Mathioudakis AG, Bartel S. et al. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 2020; 75 (09) 2170-2184
  • 88 Gusareva ES, Acerbi E, Lau KJX. et al. Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proceedings of the National Academy of Sciences of the United States of America.. Accessed 2019 at: https://www.pnas.org/content/116/46/23299
  • 89 Tiew PY, Ko FWS, Pang SL. et al. Environmental fungal sensitisation associates with poorer clinical outcomes in COPD. Eur Respir J 2020; 56 (02) 2000418
  • 90 Lim SH, Chew FT, Binti Mohd Dali SD, Wah Tan HT, Lee BW, Tan TK. Outdoor airborne fungal spores in Singapore. Grana 1998; 37 (04) 246-252
  • 91 de Vrankrijker AM, van der Ent CK, van Berkhout FT. et al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function?. Clin Microbiol Infect 2011; 17 (09) 1381-1386
  • 92 Romani L. Immunity to fungal infections. Nat Rev Immunol 2011; 11 (04) 275-288
  • 93 Chalmers JD, Chang AB, Chotirmall SH, Dhar R, McShane PJ. Bronchiectasis. Nat Rev Dis Primers 2018; 4 (01) 45
  • 94 Chalmers JD, Moffitt KL, Suarez-Cuartin G. et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am J Respir Crit Care Med 2017; 195 (10) 1384-1393
  • 95 Angrill J, Agustí C, De Celis R. et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am J Respir Crit Care Med 2001; 164 (09) 1628-1632
  • 96 Taylor SL, Rogers GB, Chen AC, Burr LD, McGuckin MA, Serisier DJ. Matrix metalloproteinases vary with airway microbiota composition and lung function in non-cystic fibrosis bronchiectasis. Ann Am Thorac Soc 2015; 12 (05) 701-707
  • 97 Poh TY, Tiew PY, Lim AYH. et al. Increased chitotriosidase is associated with aspergillus and frequent exacerbations in south-east asian patients with bronchiectasis. Chest 2020; 158 (02) 512-522
  • 98 Weaver D, Gago S, Bromley M, Bowyer P. The human lung mycobiome in chronic respiratory disease: limitations of methods and our current understanding. Curr Fungal Infect Rep 2019; 13 (03) 109-119
  • 99 Tiew PY, Mac Aogain M, Ali NABM. et al. The mycobiome in health and disease: emerging concepts, methodologies and challenges. Mycopathologia 2020; 185 (02) 207-231
  • 100 Chotirmall SH, Chalmers JD. Bronchiectasis: an emerging global epidemic. BMC Pulm Med 2018; 18 (01) 76
  • 101 Aliberti S, Masefield S, Polverino E. et al; EMBARC Study Group. Research priorities in bronchiectasis: a consensus statement from the EMBARC Clinical Research Collaboration. Eur Respir J 2016; 48 (03) 632-647
  • 102 Coron N, Pihet M, Fréalle E. et al. Toward the standardization of mycological examination of sputum samples in cystic fibrosis: results from a French multicenter prospective study. Mycopathologia 2018; 183 (01) 101-117
  • 103 Chen SC-A, Meyer W, Pashley CH. Challenges in laboratory detection of fungal pathogens in the airways of cystic fibrosis patients. Mycopathologia 2018; 183 (01) 89-100
  • 104 Baxter CG, Moore CB, Jones AM, Webb AK, Denning DW. IgE-mediated immune responses and airway detection of Aspergillus and Candida in adult cystic fibrosis. Chest 2013; 143 (05) 1351-1357
  • 105 Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 2010; 137 (01) 171-176
  • 106 Nelson LA, Callerame ML, Schwartz RH. Aspergillosis and atopy in cystic fibrosis. Am Rev Respir Dis 1979; 120 (04) 863-873
  • 107 Murphy MB, Reen DJ, Fitzgerald MX. Atopy, immunological changes, and respiratory function in bronchiectasis. Thorax 1984; 39 (03) 179-184
  • 108 Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 2015; 6: 89
  • 109 Mac Aogáin M, Vidaillac C, Chotirmall SH. Fungal infections and ABPA. In: Cystic Fibrosis. Springer; 2020: 93-126
  • 110 McShane PJ. A new bronchiectasis endophenotype: immunoallertypes. Am J Respir Crit Care Med 2019; 199 (07) 811-812
  • 111 Metersky M, Chalmers J. Bronchiectasis insanity: doing the same thing over and over again and expecting different results?. F1000 Res 2019; 8: 8
  • 112 Chalmers JD, Chotirmall SH. Bronchiectasis: new therapies and new perspectives. Lancet Respir Med 2018; 6 (09) 715-726
  • 113 Sehgal IS, Dhooria S, Prasad KT. et al. Sensitization to a fumigatus in subjects with non-cystic fibrosis bronchiectasis. Mycoses 2020
  • 114 Gao YH, Guan WJ, Xu G. et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study. Chest 2015; 147 (06) 1635-1643
  • 115 Mitchell AB, Mourad B, Buddle L, Peters MJ, Oliver BGG, Morgan LC. Viruses in bronchiectasis: a pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations. BMC Pulm Med 2018; 18 (01) 84
  • 116 Chen CL, Huang Y, Yuan JJ. et al. The roles of bacteria and viruses in bronchiectasis exacerbation: a prospective study. Arch Bronconeumol 2020; 56 (10) 621-629
  • 117 Layeghifard M, Li H, Wang PW. et al. Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 2019; 5 (01) 4
  • 118 Layeghifard M, Hwang DM, Guttman DS. Disentangling Interactions in the Microbiome: a network perspective. Trends Microbiol 2017; 25 (03) 217-228
  • 119 Sass G, Ansari SR, Dietl AM, Déziel E, Haas H, Stevens DA. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS One 2019; 14 (05) e0216085
  • 120 Mowat E, Rajendran R, Williams C. et al. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 2010; 313 (02) 96-102
  • 121 Briard B, Heddergott C, Latgé JP. Volatile compounds emitted by pseudomonas aeruginosa stimulate growth of the fungal pathogen aspergillus fumigatus. MBio 2016; 7 (02) e00219
  • 122 Tipton L, Müller CL, Kurtz ZD. et al. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 2018; 6 (01) 12
  • 123 Ali NABM, Mac Aogáin M, Morales RF, Tiew PY, Chotirmall SH. Optimisation and benchmarking of targeted amplicon sequencing for mycobiome analysis of respiratory specimens. Int J Mol Sci 2019; 20 (20) E4991
  • 124 Mac Aogáin M, Chaturvedi V, Chotirmall SH. MycopathologiaGENOMES: the new ‘home’ for the publication of fungal genomes. Mycopathologia 2019; 184 (05) 551-554
  • 125 Abdelaziz MT, Hassan M, Damasy DAE, Aziz RK. Why we missed it? Computational analysis reveals distribution patterns of Malassezia furfur, the etiological agent of Pityriasis versicolor, in skin metagenomes. In: Research Square; 2021