Skip to main content
Log in

Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Metal sulfide nanoparticles are semi-conductors that possess many applications in optics, optoelectronics and magnetic devices. There are physical and chemical methods for their synthesis but such methods involve toxic precursors as well as many obnoxious by-products. Hence, biological synthesis of metal sulfide nanoparticles are efficient enough to transform toxic metals to non-toxic ones. Pseudomonas aeruginosa, isolated from textile effluent and tolerant of high levels of heavy metals, was used for the green synthesis of metal sulfide (HgS, As3S4, CdS and PbS) nanoparticles. The optical, structural and morphological nature of metal sulfide nanoparticles was also determined. FTIR (Fourier Transform Infra-red) analysis showed spectral changes when P. aeruginosa was grown in medium containing heavy metals viz. Hg, As, Pb and Cd indicating that there are functional groups viz. carboxyl, hydroxyl, phosphate, amino and amide, that exists on the surface of the bacteria, thus facilitating binding of metals on its surface. The bacterial samples which were treated with different metals at different concentrations, were subjected to whole cell protein analysis using SDS-PAGE (Sodium dodecyl Sulphate- Polyacrylamide gel electrophoresis) and protein profiling. The total protein estimation revealed that there was an increase in the protein concentration in the presence of heavy metals and a significant change in the banding pattern was observed which showed induction of a set of proteins under heavy metal stress especially mercury.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FTIR:

Fourier Transform Infra-red

SDS-PAGE:

Sodium dodecyl Sulphate- Polyacrylamide gel electrophoresis.

TEM:

Transmission Electron Microscopy

SEM:

Scanning Electron Microscopy

XRD:

X-ray diffraction

PL:

Photoluminescence

AZUR:

Azurin,

CY551:

Cytochrome C551

NIRS:

Nitrite reductase

NOSZ:

Nitrous-oxide reductase

References

  1. Dounghong D, Ramsden J, Gratzel M (1982) Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems. J Am Chem Soc 104:2977–2985. https://doi.org/10.1021/ja00375a006

    Article  Google Scholar 

  2. Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) Size effects in the excited electronic states of small colloidal CdS crystallites. Journal Chem Phys 80:4464–4469. https://doi.org/10.1063/1.447228

    Article  CAS  Google Scholar 

  3. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. https://doi.org/10.1021/cr00098a010

    Article  CAS  Google Scholar 

  4. Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79:5566–5571. https://doi.org/10.1063/1.445676

    Article  CAS  Google Scholar 

  5. Brus L (1986) Zero-dimensional “ excitons” in semiconductor clusters. IEEE J Quan Electron 22:1909–1914. https://doi.org/10.1109/JQE.1986.1073184

    Article  Google Scholar 

  6. Henglein A (1984) Catalysis of photochemical reactions by colloidal semiconductors. Pure Appl Chem 56:1215–1224. https://doi.org/10.1351/pac198456091215

    Article  CAS  Google Scholar 

  7. Fendler JH (1987) Atomic and molecular clusters in membrane mimetic chemistry. Chem Rev 87:877–899. https://doi.org/10.1021/cr00081a002

    Article  CAS  Google Scholar 

  8. Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188. https://doi.org/10.1021/ar00174a003

    Article  CAS  Google Scholar 

  9. Gratzel M (1989) Heterogeneous Photochemical Electron Transfer. CRC Press Boca Raton. https://doi.org/10.1201/9781351073202

    Article  Google Scholar 

  10. Wang Y (1991) Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc Chem Res 24:133–139. https://doi.org/10.1021/ar00005a002

    Article  CAS  Google Scholar 

  11. Heath JR (1995) The chemistry of size and order on a nanometer scale. Science 270:1315–1316. https://doi.org/10.1126/science.270.5240.1315

    Article  CAS  Google Scholar 

  12. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:1335–1338. https://doi.org/10.1126/science.270.5240.1335

    Article  CAS  Google Scholar 

  13. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31):13226–13239. https://doi.org/10.1021/jp9535506

    Article  CAS  Google Scholar 

  14. Heath JR, Williams RS, Shiang JJ, Wind SJ, Chu J, D’Emic C et al (1996) Spatially confined chemistry: Fabrication of Ge quantum dot arrays. J Phys Chem 100:3144–3149. https://doi.org/10.1021/jp951903v

    Article  CAS  Google Scholar 

  15. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532. https://doi.org/10.1021/j100155a009

    Article  CAS  Google Scholar 

  16. Weller H (1993) Quantized semiconductor particles: a novel state of matter for materials science. Adv Mater 5:88–95. https://doi.org/10.1002/adma.19930050204

    Article  CAS  Google Scholar 

  17. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry, vol 5, Oxford University Press on Demand

  18. Alivisatos A, Johnsson K, Peng X et al (1960) Organization of “nanocrystal molecules” using DNA. Nature 382:609–611. https://doi.org/10.1038/382609a0

    Article  Google Scholar 

  19. Klostranec JM, Chan WC (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964. https://doi.org/10.1002/adma.200500786

    Article  CAS  Google Scholar 

  20. Liu YK, Zapien JA, Geng CY, Shan YY, Lee CS, Lifshitz Y, Lee ST (2004) High-quality CdS nanoribbons with lasing cavity. Appl Phys Let 85:3241–3243. https://doi.org/10.1063/1.1805714

    Article  CAS  Google Scholar 

  21. Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245. https://doi.org/10.1038/nature01353

    Article  CAS  PubMed  Google Scholar 

  22. Bruss L (1991) Quantum crystallites and nonlinear optics. Appl Phys A 53:465–474. https://doi.org/10.1007/BF00331535

    Article  Google Scholar 

  23. Shiragami T, Fukami S, Pac C, Wada Y, Yanagida S (1993) Semiconductor photocatalysis: reaction mechanisms for the photoreductivecis–transisomerization of electron-deficient alkenes catalyzed by cds powder. Bulle Chem Soc Japan 66(9):2461–2466. https://doi.org/10.1246/bcsj.66.2461

    Article  CAS  Google Scholar 

  24. Zhang J, Jiang F, Zhang L (2004) Fabrication of single-crystalline semiconductor cds nanobelts by vapor transport. Phys Chem B 108:7002–7005. https://doi.org/10.1021/jp036945v

    Article  CAS  Google Scholar 

  25. Magafas L, Anagnostopoulos AN, Antonopoulos JG (1989) On the conductivity of amorphous CdS films. Physica Status Solidi (a) 111:K175–K178. https://doi.org/10.1002/pssa.2211110245

    Article  CAS  Google Scholar 

  26. Mitchell JW (1998) On the role of sulfide molecules in photographic sensitivity. J Imag Sci Technol 42:215–221

    CAS  Google Scholar 

  27. Motte L, Pileni MP (1998) Influence of length of alkyl chains used to passivate silver sulfide nanoparticles on two-and three-dimensional self-organization. J Phys Chem B 102:4104–4109. https://doi.org/10.1021/jp9808173

    Article  CAS  Google Scholar 

  28. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Hackensack, London

    Book  Google Scholar 

  29. Kale SS, Lokhande CD (1999) Preparation and characterization of HgS films by chemical deposition. Mater Chem Phys 59:242–246. https://doi.org/10.1016/S0254-0584(99)00048-6

    Article  CAS  Google Scholar 

  30. Tokyo N (1975) Optical absorption and dispersion in rf-sputtered α-HgS films. J Appl Phys 46:4857. https://doi.org/10.1063/1.321519

    Article  Google Scholar 

  31. Najsoski MZ, Grozdanov IS, Dey SK, Siracevska BB (1998) Chemical bath deposition of mercury (II) sulfide thin layers. J Mater Chem 8:10. https://doi.org/10.1039/A802347F

    Article  Google Scholar 

  32. Tokyo N (1977) Growth and structure of rf-sputtered HgS films on NaCl. J Appl Phys 48:3405. https://doi.org/10.1063/1.324183

    Article  Google Scholar 

  33. Machol JL, Wise FW, Patel RC, Tanner DB (1993) Vibronic quantum beats in PbS microcrystallites. Phys Rev B 48:2819. https://doi.org/10.1103/PhysRevB.48.2819

    Article  CAS  Google Scholar 

  34. Kane RS, Cohen RE, Silbey R (1996) Theoretical study of the electronic structure of PbS nanoclusters. J Phys Chem 100:7928–7932. https://doi.org/10.1021/jp952869n

    Article  CAS  Google Scholar 

  35. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML et al (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597. https://doi.org/10.1038/338596a0

    Article  CAS  Google Scholar 

  36. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818. https://doi.org/10.1002/1521-4095(20020605)14:11%3c815::AID-ADMA815%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  37. Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66:3083–3087. https://doi.org/10.1128/AEM.66.7.3083-3087.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology 143:2521–2530. https://doi.org/10.1099/00221287-143-8-2521

    Article  CAS  PubMed  Google Scholar 

  39. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559. https://doi.org/10.1016/j.chembiol.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  40. Bae W, Abdullah R, Henderson D, Mehra RK (1997) Characteristics of glutathione-capped ZnS nanocrystallites. Biochem Biophys Res Commun 237:16–23. https://doi.org/10.1006/bbrc.1997.7062

    Article  CAS  PubMed  Google Scholar 

  41. Bae W, Abdullah R, Mehra RK (1998) Cysteine-mediated synthesis of CdS bionanocrystallites. Chemosphere 37:363–385. https://doi.org/10.1016/S0045-6535(98)00051-4

    Article  CAS  Google Scholar 

  42. Bae W, Mehra RK (1998) Properties of glutathione-and phytochelatin-capped CdS bionanocrystallites. J Inorganic Biochem 69:33–43. https://doi.org/10.1016/S0162-0134(97)10006-X

    Article  CAS  Google Scholar 

  43. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3%3c253::AID-ADMA253%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  44. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G et al (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci 100:6946–6951. https://doi.org/10.1073/pnas.0832310100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shenton W, Pum D, Sleytr UB, Mann S (1997) Synthesis of cadmium sulfide superlattices using self-assembled bacterial S-layers. Nature 389:585–587. https://doi.org/10.1038/39287

    Article  CAS  Google Scholar 

  46. Durve A, Naphade S, Bhot M, Varghese J, Chandra N (2012) Characterisation of metal and xenobiotic resistance in bacteria isolated from textile effluent. Adv Appl Sci Res 3:2801–2806

    CAS  Google Scholar 

  47. Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Treeratanapaiboon L, Kasikun K, Thipkeaw K, Prachayasittikul V (2009) Proteomic profiling of Escherichia coli in response to heavy metals stress. Eur J Sci Res 25:679–688. https://doi.org/10.7717/peerj.5245

    Article  CAS  Google Scholar 

  48. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  49. Sawhney SK, Singh R (2000) Introductory practical biochemistry. Alpha Science Int'l Ltd

  50. Maiti B, Shekar M, Khushiramani R, Karunasagar I, Karunasagar I (2009) Evaluation of RAPD-PCR and protein profile analysis to differentiate Vibrio harveyi strains prevalent along the southwest coast of India. J Genet 88:273–279. https://doi.org/10.1007/s12041-009-0040-z

    Article  CAS  PubMed  Google Scholar 

  51. Durrani R, Abubakar M, Arshed MJ, Saleha S, Ullah I, Ali Q (2008) Biological characterization and protein profiles of two model bacteria by SDS-PAGE and FT-IR. ARPN J Agric Biologic Sci 3:6–16

    Google Scholar 

  52. Harlow E, Lane D (1988) Antibodies. A laboratory manual. Cold Spring Harbor Laboratory Press. ISBN 978-1-936113-81-1

  53. Wang GZ, Chen W, Liang CH, Wang YW, Meng GW, Zhang LD (2001) Preparation and characterization of CdS nanoparticles by ultrasonic irradiation. Inorganic Chem Commun 4:208–210. https://doi.org/10.1016/S1387-7003(01)00172-1

    Article  CAS  Google Scholar 

  54. Balandin A, Wang KL, Kouklin N, Bandyopadhyay S (2000) Raman spectroscopy of electrochemically self-assembled CdS quantum dots. Appl Phys Let 76:137–139. https://doi.org/10.1063/1.125681

    Article  CAS  Google Scholar 

  55. Cao L, Miao Y, Zhang Z, Xie S, Yang G, Zou B (2005) Exciton interactions in CdS nanocrystal aggregates in reverse micelle. J Chem Phys 123:24702. https://doi.org/10.1063/1.1904563

    Article  CAS  PubMed  Google Scholar 

  56. Gurbanov R, Ozek S, N, Tunçer S, Severcan F, Gozen AG (2018) Aspects of silver tolerance in bacteria: infrared spectral changes and epigenetic clues. J Biophoto 11:e201700252. https://doi.org/10.1002/jbio.201700252

    Article  CAS  Google Scholar 

  57. Lee JC (2012) Staphylococcus aureus membrane vesicles and its potential role in bacterial pathogenesis. J Bacteriol Virol 42:181–188. https://doi.org/10.4167/jbv.2012.42.3.181

    Article  CAS  Google Scholar 

  58. Dunkley EA, Guffanti AA, Clejan S, Krulwich TA (1991) Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near-neutral pH when supplemented with an unsaturated fatty acid. J Bacteriol 173:1331–1334. https://doi.org/10.1128/jb.173.3.1331-1334.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gupta AD, Karthikeyan S (2016) Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and Principle component analysis. Ecotoxicol Environ Safety 130:289–294. https://doi.org/10.1016/j.ecoenv.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  60. Heipieper HJ, Meinhardt F, Segura A (2003) The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Let 229:1–7. https://doi.org/10.1016/S0378-1097(03)00792-4

    Article  CAS  Google Scholar 

  61. Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182. https://doi.org/10.1016/S0167-7012(02)00155-0

    Article  CAS  PubMed  Google Scholar 

  62. Gurbanov R, Simsek Ozek N, Gozen AG, Severcan F (2015) Quick discrimination of heavy metal resistant bacterial populations using infrared spectroscopy coupled with chemometrics. Analytical chemistry 87:9653–9661. https://doi.org/10.1021/acs.analchem.5b01659

    Article  CAS  PubMed  Google Scholar 

  63. Pan J, Ge X, Liu R, Tang H (2006) Characteristic features of Bacillus cereus cell surfaces with biosorption of Pb (II) ions by AFM and FT-IR. Colloids and surfaces B: Biointerfaces 52:89–95. https://doi.org/10.1016/j.colsurfb.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  64. Kardas M, Gozen AG, Severcan F (2014) FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat Toxicol 155:15–23. https://doi.org/10.1016/j.aquatox.2014.05.027

    Article  CAS  PubMed  Google Scholar 

  65. Faghihzadeh F, Nelson MA, Laura AS, Vinka OC (2016) Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng 1:1–16. https://doi.org/10.1007/s41204-016-0001-8

    Article  Google Scholar 

  66. Dovbeshko GI, Gridina NY, Kruglova EB, Pashchuk OP (2000) FTIR spectroscopy studies of nucleic acid damage. Talanta 53:233–246. https://doi.org/10.1016/S0039-9140(00)00462-8

    Article  CAS  PubMed  Google Scholar 

  67. Zhang D, Pan X, Zhao L, Mu G (2011) Biosorption of antimony (Sb) by the cyanobacterium Synechocystis sp. Pol J Environ Stud 20:1353–1358

    CAS  Google Scholar 

  68. Mouwen DJM, Hörman A, Korkeala H, Alvarez-Ordóñez A, Prieto M (2011) Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vibration Spectros 56:193–201. https://doi.org/10.1016/j.vibspec.2011.02.008

    Article  CAS  Google Scholar 

  69. Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M, Brčeski I, Beškoski V, Lončarević B, Gopčević K, Karadžić I (2018) Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. RSC Adv 8:10549–10560. https://doi.org/10.1039/c8ra00371h

    Article  CAS  Google Scholar 

  70. Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571. https://doi.org/10.1099/00221287-146-3-551

    Article  CAS  PubMed  Google Scholar 

  71. Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605. https://doi.org/10.1007/s10295-005-0019-6

    Article  CAS  PubMed  Google Scholar 

  72. Sreemanthula S, Kathera CS, Jasti PK (2013) Preliminary protein profiling of copper and zinc treated Lactobacillus rhamnosus. Life 50:L1–L5

    Google Scholar 

  73. Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Analytic Bioanalytic Chem 376:26–32. https://doi.org/10.1007/s00216-003-1843-z

    Article  CAS  Google Scholar 

  74. Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153. https://doi.org/10.1016/j.biortech.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  75. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  76. Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8:154. https://doi.org/10.1007/s13201-018-0796-5

    Article  CAS  Google Scholar 

  77. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  PubMed  Google Scholar 

  78. Jan AT, Azam M, Ali A, Haq QMR (2014) Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol 44:519–560. https://doi.org/10.1080/10643389.2012.728811

    Article  CAS  Google Scholar 

  79. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  80. Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891. https://doi.org/10.1016/j.cej.2009.08.006

    Article  CAS  Google Scholar 

  81. Dameron CT, Winge DR (1990) Characterization of peptide-coated cadmium-sulfide crystallites. Inorganic Chem 29:1343–1348. https://doi.org/10.1021/ic00332a011

    Article  CAS  Google Scholar 

  82. Hosseini MR, Sarvi MN (2015) Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater Sci Semicon Process 40:293–301. https://doi.org/10.1016/j.mssp.2015.06.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Annika Durve Gupta (B. K. Birla College (Autonomous), Kalyan) thanks the faculty and Non-teaching staff from Department of Biotechnology, B. K. Birla College (Autonomous), Kalyan for their help and support. We would like to thank SAIF-IIT, Bombay for their help in FTIR analysis.

Funding

Goldie Oza and Jośe Herrera-Celis (Catedra Conacyt) thank Conacyt for their kind support under the Catedras Project 746. L.G. Arriaga and Goldie Oza also acknowledge the support of Conacyt funded Project 299 058 and Ciencias Fronteras Project CF19-2 096 029.

Author information

Authors and Affiliations

Authors

Contributions

Annika Durve Gupta, Arvind Gupta and Goldie oza were involved in conceptualization, validation, investigation of the project, Annika Durve Gupta, Goldie oza and Ashutosh Sharma were involved in writing the original draft and were involved in the draft preparation, Almendra Reyes, Victor Ishrayelu Merupo, Jose Herrera-Celis were involved in performing experiments and data analysis. Naresh Chandra, Luis Gerardo Arriaga, Jose Tapia Ramirez and Golap Kalita were helpful in provision of resources, Ashutosh Sharma, Luis Gerardo Arriaga, Jose Tapia Ramirez and Golap Kalita helped in writing-review and editing, visualization, supervision, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Annika Durve Gupta or Goldie Oza.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3682 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.D., Gupta, A., Reyes-Calderón, A. et al. Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies. J Fluoresc 31, 1445–1459 (2021). https://doi.org/10.1007/s10895-021-02769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02769-2

Keywords

Navigation