Skip to main content

Advertisement

Log in

Mathematical analysis of hybridized ferromagnetic nanofluid with induction of copper oxide nanoparticles in permeable channel by incorporating Darcy–Forchheimer relation

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

Current pagination is devoted to explicate flow attributes of magnetized ferronanoliquid in permeable media in an absorbent channel. Darcy–Forchheimer's relation is utilized to interpret the consideration of porosity. Two types of metallic oxide nanoparticles are used to study hybrid nano-ferrofluids influenced by convective conduction. Mathematical formulation of problem is attained in partial differential structuring and transmuted into ODE’s by incorporating transformation. Solution of manipulated formulation is attained by implementing shooting method. Influence of involved flow variables is elaborated in graphical manner. Variation in quantities like \(f''\)\((\eta )\) (wall friction coefficient) and \(\theta ^{\prime}(\eta )\) (heat flux) is disclosed in tables. It is observed from analysis that by incrementing Forchheimer number (F) and porosity parameter (r) momentum distribution declines. Thermal augmentation performance is explored with the variation of critical values of the hybrid-nanoparticles volume fractions along with expanding/contracting parameter. It is deduced from examination that addition of hybridized particle composed of \({\text{Fe}}_{{\text{3}}} {\text{O}}_{{\text{4}}}\)+CuO raises thermophysical features of base fluid rather than consideration of CuO particles separately. Novel findings associated with wall drag coefficient at lower boundary of channel in view of decrement in its aptitude versus Darcy–Forchheimer variable in case of contraction is depicted, whereas reverse behavior is observed for the situation of expansion in channel is attained. Decrease in convective thermal flux and wall drag coefficients are exhibited against Reynolds number. Optimum positive change in Nusselt number against Eckert number (Ec) is manifested at nanoparticle volume fraction magnitude equals to 0.05. With expansion in channel Nusselt and skin friction coefficients magnitude drops suddenly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

F :

Darcy porous medium parameter

r :

Porous medium parameter

F fd :

Ferrofluid

HFfd :

Hybrid ferrofluid

NP's :

Nanoparticles

FP's :

Ferroparticles

Pr:

Prandtl number

Re:

Reynolds number

Ec :

Eckert number

Nu:

Nusselt number

Pe:

Peclet number

k bf :

Shape factor for thermal conductivity base fluid

µ bf :

Dynamic viscosity of the base fluid

\(\upsilon\) hffd :

Kinematic viscosity of HFfd

α :

Thermal diffusivity

µ hffd :

Dynamic viscosity of HFfd

α hffd :

Thermal diffusivity of HFfd

ρ bf :

Water density (base fluid)

µ bf :

Water dynamic viscosity

x, y :

Coordinate axis

ρ hffd :

Density of HFfd

\(\upsilon\) :

Kinematic viscosity

µ :

Dynamic viscosity

ρ :

Density

ρ c P :

Specific heat capacity

T :

Temperature

(C p)hffd :

Specific heat of HFfd

k hffd :

Thermal conductivity of HFfd

N:

Size of particles

P :

Pressure

u, v :

Velocity components

ρ s 1, ρ s 2 :

Densities of FP's

k s 1, k s 2 :

Thermal conductivities for FP'sFe3o4, Cuo

η :

Independent similarity variable

φ 1, φ 2 :

Ferroparticle’s volume fraction

F η :

Dimensionless radial velocity profile

θ η :

Dimensionless temperature profile

K :

Thermal conductivity

dy :

Heat flux

A VP :

Axial velocity profile

R VP :

Radial velocity profile

T P :

Temperature profile

ς y :

Shear stresses

Rer :

Local Reynolds number

References

  1. Yasmeen, T., Hayat, T., Khan, M.I., Imtiaz, M., Alsaedi, A.: Ferro fluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions. J. Mol. Liq. 223, 1000–1020 (2016)

    Article  Google Scholar 

  2. Zeeshan, A., Majeed, A., Ellahi, R.: Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. Mol. Liq. 215, 549–554 (2016)

    Article  Google Scholar 

  3. Suresh, S., Venkitaraj, K.P., Selvakumar, P., Chandrasekar, M.: Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)

    Article  Google Scholar 

  4. Ramandevi, B., Reddy, J.V.R., Sugunamma, V., Sandeep, N.: Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux. Alex. Eng. J 57, 1009–1018 (2018)

    Article  Google Scholar 

  5. Kandelousi, M.S., Ellahi, R.: Simulation of ferrofluid flow for magnetic drug targeting using the lattice Boltzmann method. Zeitschrift für Naturforschung A. 70, 115–124 (2015)

    Article  Google Scholar 

  6. Afrand, M., Toghraie, D., Ruhani, B.: Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp. Ther. Fluid Sci. 77, 38–44 (2016)

    Article  Google Scholar 

  7. Ramzan, M., Ullah, N., Chung, J.D., Lu, D., Farooq, U.: Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. Sci. Rep. 7, 12901 (2017)

    Article  Google Scholar 

  8. Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K., Ganji, D.D.: Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Tech. 322, 428–438 (2017)

    Article  Google Scholar 

  9. Sankar, M., Beomseok, K., Lopez, L.M., Do, Y.: Thermosolutal convection from a discrete heat and solute source in a vertical porous annulus. Int. J. Heat Mass Transf. 55, 4116–4128 (2012)

    Article  Google Scholar 

  10. Sheikholeslami, M., Rashidi, M.M., Ganji, D.D.: Effect of non-uniform magnetic field on forced convection heat transfer of water nanofluid. Comput. Method. Appl. Mech. Eng. 294, 299–312 (2015)

    Article  MATH  Google Scholar 

  11. Choi, C., Kim, S., Kim, K.T., Park, I.H.: Simulation of hydrostatical equilibrium of ferrofluid subject to magneto-static field. IEEE Trans. Magn. 44, 818–821 (2008)

    Article  Google Scholar 

  12. Sajjadi, H., Delouei, A.A., Izadi, M., Mohebbi, R.: Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. Int. J. Heat Mass Transf. 132, 1087–1104 (2019)

    Article  Google Scholar 

  13. Sharma, D., Sharma, R.C.: Effect of dust particles on thermal convection in ferromagnetic fluid saturating a porous medium. J. Magn Magn Mater. 288, 183–195 (2005)

    Article  Google Scholar 

  14. Foisal, A.A., Alam, M.: Unsteady free convection fluid flow over an inclined plate in the presence of a magnetic field with thermally stratified high porosity medium. J. Appl. Fluid Mech. 9, 1467–1475 (2016)

    Article  Google Scholar 

  15. Bhatti, M.M., Abbas, T., Rashidi, M.M.: A new numerical simulation of MHD stagnation-point flow over a permeable stretching/shrinking sheet in porous media with heat transfer. Iran. J. Sci. Technol. Trans. A Sci 41, 779–785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maleki, H., Safaei, M.R., Alrashed, A.A., Kasaeian, A.: Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J. Therm. Anal. Calorim. 135, 1655–1666 (2019)

    Article  Google Scholar 

  17. Mukhopadhyay, S.: Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at the boundary. Alex. Eng. J. 52, 563–569 (2013)

    Article  Google Scholar 

  18. Ciriello, V., Longo, S., Chiapponi, L., Federico, V.D.: Porous gravity currents: a survey to determine the joint influence of fluid rheology and variations of medium properties. Adv. Water Res. 92, 105–115 (2016)

    Article  Google Scholar 

  19. Longo, S., Federico, V.D., Chiapponi, L., Archetti, R.: Experimental verification of power-law non-Newtonian axisymmetric porous gravity currents. J. Fluid Mech. 731, R2 (2013)

    Article  MATH  Google Scholar 

  20. Pal, D., Mondal, H.: Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int. Commun. Heat Mass Transf. 39(7), 913–917 (2012)

    Article  Google Scholar 

  21. Ganesh, N.V., Hakeem, A.K.A., Ganga, B.: Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second-order slip, viscous and Ohmic dissipations effects. Ain Shams Eng. J. 9, 939–951 (2016)

    Article  Google Scholar 

  22. Forchheimer, P.: Wasserbewegung durch boden. Zeitschrift Ver. D. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  23. Muskat, M.: The flow of homogeneous fluids through porous media. Edwards, London (1946)

    Google Scholar 

  24. Hayat, T., Haider, F., Muhammad, T., Alsaedi, A.: On Darcy Forchheimer flow of Carbon nanotubes due to a rotating disk. Int. J. Heat and Mass Transf. 112, 248–254 (2017)

    Article  Google Scholar 

  25. Muhammad, T., Alsaedi, A., Shehzad, S.A., Hayat, T.: A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin. J. Phys. 55, 963–976 (2017)

    Article  Google Scholar 

  26. Sheikoleslami, M., Zeeshan, A.: Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. Int. J. Numer. Meth. Heat Fluid Flow 28, 641–660 (2018)

    Article  Google Scholar 

  27. Hayat, T., Saif, R.S., Ellahi, R., Muhammad, T., Ahmad, B.: Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with CattaneoChristov heat flux and homogeneous-heterogeneous reactions. Results Physics. 7, 2886–2892 (2017)

    Article  Google Scholar 

  28. Chevalier, T., Chevalier, C., Clain, X., Dupla, J.C., Canou, J., Rodts, S., Coussot, P.: Darcy’s law for yield stress fluid flowing through a porous medium. J. Non-Newton. Fluid Mech. 195, 57–66 (2013)

    Article  Google Scholar 

  29. Yadav, D., Bhargava, R., Agrawal, G.S.: Thermal instability in a nanofluids layer with a vertical magnetic field. J Eng Math 80, 147–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Srinivasacharya, D., Jagadeeshwar, P.: Effect of Joule heating on the flow over an exponentially stretching sheet with convective thermal condition. Math. Sci. 13, 201–211 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mat, N.A.A., Arifin, N.M., Nazar, R., Ismail, F.: Radiation effect on Marangoni convection boundary layer flow of a nanofluids. Math. Sci. 6, 21 (2012)

    Article  MATH  Google Scholar 

  32. Yadav, D., Agarwal, G.S., Bhargava, R.: Thermal instability of rotating nanofluid layer. Int. J. Eng. Sci. 49, 1171–1184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yadav, D., Agarwal, G.S., Bhargava, R.: Onset of Double difffusive nanofluid convection in a layer of statuarated porous medium with thermal conductivity and viscosity variation. J. Porous Media (2013). https://doi.org/10.1615/JPorMedia.v16.i2.30

    Article  Google Scholar 

  34. Yadav, D., Bhargava, R., Agrawal, G.S., Yadav, N., Lee, J., Kim, M.C.: Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluid Nanofluid 16, 425–440 (2014)

    Article  Google Scholar 

  35. Yadav, D., Bhargava, R., Agrawal, G.S.: Boundary and internal heat source effects on the onset of Darcy-Brinkman convection in a porous layer saturated by nanofluid. Int. J. Therm. Sci. 60, 244–254 (2012)

    Article  Google Scholar 

  36. Akbar, M.Z., Ashraf, M., Iqbal, M.F., Ali, K.: Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium. AIP Adv. 6, 045222 (2016)

    Article  Google Scholar 

  37. Sheikholeslami, M.: New computational approach for exergy and entropy analysis nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sheikholeslami, M., Shafee, A., Zareei, A., Haq, R.U., Li, Z.: Heat transfer of magnetic nanoparticles through porous media including exergy analysis. J. Mol. Liq. 279, 719–732 (2019)

    Article  Google Scholar 

  39. Bhatti, M.M., Sheikholeslami, M., Shahid, A., Hassan, M., Abbas, T.: Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation. Colloids Surf. A 570, 368–376 (2019)

    Article  Google Scholar 

  40. Kumar, R., Kumar, R., Sharma, T., Sheikholeslami, M.: Mathematical modeling of stagnation region nanofluid flow through Darcy-Forchheimer space taking into account inconsistent heat source/sink. J. of Appl. Math. Comput. 65, 713–734 (2021)

    Article  MathSciNet  Google Scholar 

  41. Li, Z., Selimefendigil, F., Sheikholeslami, M., Shafee, A., Alghamdi, M.: Hydrothermal analysis of nanoparticles transportation through a porous compound cavity utilizing two temperature model and radiation heat transfer under the effects of magnetic field. Microsyst. Technol. 26, 333–344 (2020)

    Article  Google Scholar 

  42. Federico, V.D., Longo, S., Chiapponi, L., Archetti, R., Ciriello, V.: Radial gravity currents in vertically graded porous media: theory and experiments for Newtonian and power-law fluids. Adv. Water Res. 70, 65–76 (2014)

    Article  Google Scholar 

  43. Longo, S., Federico, V.D., Chiapponi, L.: A dipole solution for power-law gravity currents in porous formations. J. Fluid Mech. 778, 534–551 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ali, K., Akbar, M.Z., Iqbal, M.F., Ashraf, M.: Numerical simulation of heat and mass transfer in unsteady nanofluid between two orthogonally moving porous coaxial disks. AIP Adv. 4, 107113 (2014). https://doi.org/10.1063/1.4897947

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bilal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, S., Qureshi, M.Z.A. Mathematical analysis of hybridized ferromagnetic nanofluid with induction of copper oxide nanoparticles in permeable channel by incorporating Darcy–Forchheimer relation. Math Sci (2021). https://doi.org/10.1007/s40096-021-00421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40096-021-00421-5

Keywords

Navigation