Skip to main content
Log in

Vapor Explosions: Modeling and Experimental Analysis in Both Small- and Large-Scale Setups: A Review

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper provides an overview of recent developments in vapor explosion studies, including small- and large-scale experiments, and vapor explosion modeling. Modeling is most often carried out on large-scale systems since these models are often used at an industrial scale. Small-scale experiments typically have a configuration of droplet impingement, whereas large-scale experiments more frequently use a configuration including jetting. The state-of-the-art setups for both scales are discussed in this work, and current state-of-the-art vapor explosion modeling is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

adapted from Ref. 21).

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

adapted from Ref. 52).

Fig. 10

adapted from Ref. 50).

Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Ferguson and N. Zsamboky, in 2017 AISTech Conference Proceedings (AIST, Nashville, Tennessee, USA, 2017), pp. 30–35.

  2. M. Leskovar, R. Meignen, C. Brayer, M. Bürger, and M. Buck, in The 2nd European Review Meeting on Severe Accident Research (ERMSAR, Karlsruhe, Germany, 2007), p. 16.

  3. K. Hildal, Steam explosions during granulation of Si-Rich Alloys.: Effect of Al- and Ca-Additions, NTNU Norwegian University of Science and Technology, 2002.

  4. R. C. Reid, in Advances in Chemical Engineering (Elsevier, 1983), pp. 105.

  5. G. Berthoud, Annu. Rev. Fluid. Mech. 32, 573. (2000).

    Article  Google Scholar 

  6. L.C. Witte, J.E. Cox, and J.E. Bouvier, JOM 22, 39. (1970).

    Article  Google Scholar 

  7. W. Zyszkowski, Int. J. Heat Mass Transfer 19, 625. (1976).

    Article  Google Scholar 

  8. S.J. Board, C.L. Farmer, and D.H. Poole, Int. J. Heat. Mass Transfer 17, 331. (1974).

    Article  Google Scholar 

  9. M. Furuya, and I. Kinoshita, Exp. Therm. Fluid Sci. 26, 213. (2002).

    Article  Google Scholar 

  10. C.-K. Huang, and V.P. Carey, Int. J. Heat. Mass Transfer 50, 269. (2007).

    Article  Google Scholar 

  11. Z. Wang, X. Wang, P. Zhu, P. Chen, X. Zhao, and H. Zhang, J. Loss Prevent. Process. Ind. 49, 839. (2017).

    Article  Google Scholar 

  12. P. Shen, W. Zhou, N. Cassiaut-Louis, C. Journeau, P. Piluso, and Y. Liao, Ann. Nucl. Energy 121, 162. (2018).

    Article  Google Scholar 

  13. M. Leskovar, and M. Uršič, Nucl. Eng. Des. 239, 2444. (2009).

    Article  Google Scholar 

  14. M. Strandberg, Ex-Vessel Steam Explosion Analysis with MC3D (VTT Technical Research Centre of Finland Ltd, 2016), p. 51.

  15. Y. Li, Z. Wang, M. Lin, M. Zhong, Y. Zhou, and Y. Yang, Sci. Technol. Nucl. Installations 2017, 1. (2017).

    Google Scholar 

  16. R. Meignen, S. Picchi, J. Lamome, B. Raverdy, S.C. Escobar, and G. Nicaise, Nucl. Eng. Des. 280, 511. (2014).

    Article  Google Scholar 

  17. G. Long, Metal Progress. 71, 107. (1957).

    Google Scholar 

  18. R.C. Hansson, H.S. Park, and T.-N. Dinh, Nucl. Technol. 167, 223. (2008).

    Article  Google Scholar 

  19. A. Simons, I. Bellemans, K. Verbeken, and T. Crivits, Metals 11, 55. (2021).

    Article  Google Scholar 

  20. A. Annunziato, A. Yerkess, and C. Addabbo, Nucl. Eng. Des. 189, 359. (1999).

    Article  Google Scholar 

  21. R. Meignen, D. Magallon, K.-H. Bang, G. Berthoud, S. Basu, M. Buerger, M. Buck, M. L. Corradini, H. Jacobs, O. Melikhov, M. Naitoh, K. Moriyama, R. Sairanen, J.-H. Song, N. Suh, and T. G. Theofanous, Proceedings of ICAPP (Seoul, Korea, 2005), p. 13.

  22. M. Uršič, M. Leskovar, and B. Mavko, Nucl. Eng. Des. 241, 1206. (2011).

    Article  Google Scholar 

  23. V. Loisel, J.-A. Zambaux, M. Hadj-Achour, S. Picchi, O. Coindreau, and R. Meignen, Nucl. Eng. Des. 346, 200. (2019).

    Article  Google Scholar 

  24. I. Huhtiniemi, D. Magallon, and H. Hohmann, Nucl. Eng. Des. 189, 379. (1999).

    Article  Google Scholar 

  25. Y. Zhou, M. Lin, M. Zhong, X. Yan, and Y. Yang, Ann. Nucl. Energy 70, 248. (2014).

    Article  Google Scholar 

  26. M. Lin, Y. Zhou, M. Zhong, X. Yan, and Y. Yang, Ann. Nucl. Energy 70, 256. (2014).

    Article  Google Scholar 

  27. G. Ciccarelli, and D.L. Frost, Nucl. Eng. Des. 146, 109. (1994).

    Article  Google Scholar 

  28. S. C. Escobar, R. Meignen, S. Picchi, N. Rimbert, and M. Gradeck, Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (Chicago, IL, 2015), pp. 6543–6556.

  29. R. Meignen, P. Piluso, and N. Rimbert, Proceedings of NURETH-17 (Xi’an, China, 2017), p. 16.

  30. R. Meignen, B. Raverdy, S. Picchi, and J. Lamome, Nucl. Eng. Des. 280, 528. (2014).

    Article  Google Scholar 

  31. D. George, C. Nexhip, D. George-Kennedy, and R. Foster, Proceedings of the 2006 TMS Annual Meeting & Exhibition: Granulation of Molten Materials (Edited by Cameron Harris, Hani Hanein & Tony Warner) (TMS, San Antonio, Texas, USA, 2006), p. 13.

  32. S. G. Epstein, Proceedings of the Technical Sessions Presented by the TMS Aluminum Committee at the TMS 2009 Annual Meeting and Exhibition (TMS, San Francisco, California, USA, 2009), pp. 665–666.

  33. D. Magallon, I. Huhtiniemi, and H. Hohmann, Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (Tokai-Mura, Japan, 1997), pp. 431–446.

  34. Y. Sibamoto, Y. Kukita, and H. Nakamura, Nucl. Technol. 139, 205. (2002).

    Article  Google Scholar 

  35. T.A. Dullforce, D.J. Buchanan, and R.S. Peckover, J. Phys. D Appl. Phys. 9, 1295. (1976).

    Article  Google Scholar 

  36. A.W. Lowery, Light Metals 2015 (Springer, Cham, 2015), pp 905–907.

    Book  Google Scholar 

  37. R. Meignen, B. Raverdy, M. Buck, G. Pohlner, P. Kudinov, W. Ma, C. Brayer, P. Piluso, S.-W. Hong, M. Leskovar, M. Uršič, G. Albrecht, I. Lindholm, and I. Ivanov, Ann. Nucl. Energy 74, 125. (2014).

    Article  Google Scholar 

  38. Q. Lu, D. Chen, and C. Li, Appl. Therm. Eng. 98, 962. (2016).

    Article  Google Scholar 

  39. N. Kouraytem, E.Q. Li, and S.T. Thoroddsen, Phys. Rev. E93, (2016).

  40. M. Furuya, and T. Arai, Int. J. Heat Mass Transfer 51, 4439. (2007).

    Article  Google Scholar 

  41. L. Wang, A. Xian, and H. Shao, High Temp. High Press 35/36, 659. (2003).

    Article  Google Scholar 

  42. C.J.M. Lasance, Thermal Conductivity of Liquid Metals (https://Www.Electronics-Cooling.Com/2008/05/Thermal-Conductivity-of-Liquid-Metals/) (2008).

  43. F. Gronvold, J. Therm. Anal. 13, 419. (1978).

    Article  Google Scholar 

  44. B.B. Alchagirov, and A.M. Chochaeva, High Temp. 38, 44. (2000).

    Article  Google Scholar 

  45. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, Calphad 54, 35. (2016).

    Article  Google Scholar 

  46. J.A. Cahill, A.V. Grosse, and A.D. Kirshenbaum, J. Inorg. Nucl. Chem. 22, 6. (1961).

    Google Scholar 

  47. J.A. Cahill, and A.D. Kirshenbaum, Inorg. Nucl. Chem. 25, 501. (1963).

    Article  Google Scholar 

  48. M.J. Assael, K.D. Antoniadis, W.A. Wakeham, M.L. Huber, and H. Fukuyama, J. Phys. Chem. Ref. Data 46, 033101. (2017).

    Article  Google Scholar 

  49. Y. Sibamoto, Y. Kukita, and H. Nakamura, J. Nucl. Sci. Technol. 44, 1059. (2007).

    Article  Google Scholar 

  50. S. Kondo, K. Konishi, M. Isozaki, S. Imahori, A. Furutani, and D.J. Brear, Nucl. Eng. Des. 155, 73. (1995).

    Article  Google Scholar 

  51. S. Nukiyama, Int. J. Heat Mass Transfer 9, 1419. (1966).

    Article  Google Scholar 

  52. A. Bejan, and A.D. Kraus, Heat Transfer Handbook (Wiley, New York, 2003).

    Google Scholar 

  53. D. Magallon, and I. Huhtiniemi, Nucl. Eng. Des. 204, 369. (2001).

    Article  Google Scholar 

  54. D.F. Fletcher, Nucl. Eng. Des. 155, 27. (1995).

    Article  Google Scholar 

  55. S. Kumar, D. Sharma, and Kabir-ud-Din, Langmuir 16, 6821 (2000).

  56. S.M. Zielinski, A.A. Sansone, M. Ziolkowski, and R.P. Taleyarkhan, J. Heat Transfer 133, 8. (2011).

    Article  Google Scholar 

  57. M. Furuya and T. Arai, International Heat Transfer Conference 16 (Begellhouse, Beijing, China, 2018), pp. 2439–2446.

  58. L.S. Nelson, M.J. Eatough, and K.P. Guay, Light Metals 1989: Proceedings of the Technical Sessions by the TMS Light Metals Committee at the 118 TMS Annual Meeting (Las Vegas, Nevada, USA, 1989), pp. 1057–1067.

  59. K.M. Becker, J. Engstrom, and R.V. MacBeth, Enhancement of Core Debris Coolability (Report: KTH-NEL-51) (Royal Institute of Technology, Stockholm, 1990).

  60. K.M. Becker and K.P. Lindland, The Effects of Surfactants on Hydrodynamic Fragmentation and Steam Explosions (Report: KTH-NEL-50) (Royal Institute of Technology, Stockholm, 1991).

  61. M.G. Kowal, M.F. Dowling, and S.I. Abdel-Khalik, Nucl. Sci. Eng. 115, 185. (1993).

    Article  Google Scholar 

  62. M.F. Dowling, B.M. Ip, and S.I. Abdel-Khalik, Nucl. Sci. Eng. 113, 300. (1993).

    Article  Google Scholar 

  63. R.H. Petrucci, F.G. Herring, J.D. Madura, and C. Bissonnette, General chemistry: principles and modern applications, 11th edn. (Pearson Canada, Toronto, 2017).

    Google Scholar 

  64. H. Tveit, M. Garcia, H. Delbeck, A.T. Haug, B. Saugestad, and I.J. Eikeland, in Silicon for the Chemical and Solar Industry IX (Oslo, Norway, 2008).

  65. H.K. Fauske, Nucl. Sci. Eng. 51, 95. (1973).

    Article  Google Scholar 

  66. W. Zszkowski, Int. J. Heat Mass Transfer 19, 849. (1976).

    Article  Google Scholar 

  67. T. G. Theofanous, W. W. Yuen, S. Angelini, J. J. Sienicki, K. Freeman, X. Chen, and T. Salmassi, Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (Tokai-Mura, Japan, 1997), pp. 63–119.

  68. D. Magallon, and H. Hohmann, Nucl. Sci. Eng. 177, 321. (1997).

    Article  Google Scholar 

  69. F.M. Page, A.T. Chamberlain, and R. Grimes, J. Phys. Colloq. 48, C3. (1987).

    Google Scholar 

  70. L.A. Dombrovsky, Int. J. Heat Mass Transfer 107, 432. (2017).

    Article  Google Scholar 

  71. L. Manickam, An experimental study on melt fragmentation, Oxidation and steam explosion during fuel coolant interactions, AlbaNova University Center, (2018).

Download references

Acknowledgements

This work was supported by VLAIO, the Flanders Innovation & Entrepreneurship Agency, in cooperation with Umicore under Grant HBC.2018.0208. I.B. holds a research grant from the Research Foundation—Flanders (12Z7720N).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arne Simons or Kim Verbeken.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, A., Bellemans, I., Crivits, T. et al. Vapor Explosions: Modeling and Experimental Analysis in Both Small- and Large-Scale Setups: A Review. JOM 73, 3046–3063 (2021). https://doi.org/10.1007/s11837-021-04767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04767-y

Navigation