Skip to main content
Log in

Evidence of sulfur isotope about the sedimentary environment of new type of polyhalite potassium ore in the northeast Sichuan Basin

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The δ34S curve of sulfate from Members V–IV of the Jialingjiang Formation of the Sichuan Basin in the Early Triassic (T1j4−5) is highly consistent with global marine sulfate, and their trends are also similar, showing that the Early–Middle Triassic evaporites in the Sichuan Basin are comparable with those of the Early–Middle Triassic global evaporites and that the massive polyhalite deposit of the Early–Middle Triassic in the Sichuan Basin is related to global events, seawater composition and climate conditions. The sulfur isotopes of anhydrite with different symbiotic minerals at certain depths are steadily distributed, and the sulfur isotopes are not affected by recrystallization of gypsum (anhydrite). During the deposition of the Jialingjiang Formation, the Xuanhan–Dazhou area was the salinization center, accumulating a lot of the early residual brines with high δ34S values. In section V of the Jialingjiang stage, the volume of seawater entering the northeastern Sichuan Basin was integrally limited by basin uplift, the ancient Luzhou–Kaijiang uplift, and seawater with a low δ34S value slowly entered the Xuanhan area, leading to a gradual reduction in the δ34S value in the secondary basin until the basin was completely closed. Thus, the sulfur isotope value of sulfate from T1j4−5 in the ZK001 core gradually decreased (from 33.65 to 30.69 ‰) and then remained steady at 30.14 + 0.35 ‰, and the δ34S value of marine sulfate was slightly higher than the global average. The δ34S composition of the anhydrite sample from the Zk001 core is stable, and no abnormal fluctuation is found at the bottom of the new type of polyhalite potassium ore, implying that the provenance and sedimentary environment have not changed. The polyhalite fragment in the new type of polyhalite potassium ore is a kind of “non-in situ” polyhalite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam BJ, Roland M, Bin H, Shaun TB, Demir A, Sun YD, De Donald J, Jonathan LP (2014) Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth and Planet Sci Lett 396:201–212

    Article  Google Scholar 

  • Alexa RCS, Matthew RS, Thomas JA, Micha H, Rainer B, Kenneth F, Rhawn FD (2014) 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: linking temperature to weathering rates and the tempo of ecosystem recovery. Geology 42(9):779–782

    Article  Google Scholar 

  • Braitsch O (1962) Entstehung und stoffbestand der salzlagerstätten. Springer, Berlin

    Book  Google Scholar 

  • Busson G, Perthuisot JP (1977) Interét de la Sebkha el Melah (Sud-Tunisien) pour l’interpretation des series évaporitiques anciennes. Sed Geol 19:139–164

    Article  Google Scholar 

  • Cai KQ, Yuan JQ (1986) The ore-forming conditions and prospecting direction of Triassic potassium salt in sichuan. Geol Chem Min 2:1–9

    Google Scholar 

  • Chen LR (2010) Investigation on sulfur isotopic composition and its geological genesis of marine triassic anhydrite in Sichuan Basin. J Sichuan Univ Sci Eng (natl Sci Ed) 2(23):238–248

    Google Scholar 

  • Chen JS, Chu XL (1988) Sulfur isotope composition of Triassic marine sulfates of South China. Chem Geol 72:155–161

    Google Scholar 

  • Chen JS, Zhao R, Huo WG, Yao YY, Pan SL, Shao MR, Hai CZ (1981) Sulfur isotopes of some marine gypsum. Sci Geol Sinica 3:273–278

    Google Scholar 

  • Chen LQ, Shen ZG, Hou FH, Fang SX (2010) Formation environment of Triassic evaporate rock basin and dolostone reservoirs in the Sichuan Basin. Pet Geol Exp 4:334–340

    Google Scholar 

  • Chen AQ, Wang LC, Ji GJ, Cao K, Xu SL, Tang WB (2015) Evaporatic environment and the concentration model of potash in the early-middle Triassic, northeastern Sichuan Basin. Acta Petrol Sinica 31(9):2757–2769

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  • Cortecci C, Reyes E, Berti G, Casati P (1981) Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem Geol 34:65–79

    Article  Google Scholar 

  • Holser WT (1966) Diagenetic polyhalite in recent salt from Baja California. Am Miner 51:99–109

    Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408

    Article  Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 66(1):93–135

    Article  Google Scholar 

  • Huang JG, Liu WS (1981) Distribution of sulfur isotopes in Triassic evaporite strata in Sichuan basin. Geoscience 12(2):73–79

    Google Scholar 

  • Huang JG, Liu SW (1989) Sulfur isotope distribution of triassic evaporite and its geological significance in Sichuan basin. Acta Sedimentol Sin 7(2):105–110

    Google Scholar 

  • Huang KK, Huang SJ, Hu ZW, Zhong YJ, Li XN (2016) Carbon isotopic composition and evolution of the Lower Triassic marine carbonates from Dukou of Xuanhan and Beibei of Chongqing Sichuan Basin. J Palaeogeogr 18(1):101–114

    Google Scholar 

  • Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the permian-triassic boundary in South China. Science (NY) 289(5478):432–436

    Article  Google Scholar 

  • Kampschulte A, Buhl D, Strauss H (1998) The sulfur and strontium isotopic compositions of Permian evaporites from the Zechstein basin, northern Germany. Geol Rundsch 87:192–199

    Article  Google Scholar 

  • Kimberly VL, Kate M, Demir A, Brian M, Kelleya LRK, Daniel JL, Juan CS, Karrie LW, Yu MY, Jonathan LP (2016) Marine anoxia and delayed earth system recovery after the end-Permian extinction. Earth Atmos Planet Sci 113(9):2360–2365

    Google Scholar 

  • Kozur HW (1998) Some aspects of the permian-triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143(3):227–272

    Article  Google Scholar 

  • Leitner C, Neubauer F, Marschallinger R, Genser J, Bernroider M (2013) Origin of deformed halite hopper crystals, pseudomorphic anhydrite cubes and polyhalite in Alpine evaporites (Austria, Germany). Int J Earth Sci 102:813–829

    Article  Google Scholar 

  • Liao LZ, Huang FH, Liu QC, Hu CS (1984) The characteristics and origin of polyhalite in gypsum-anhydrite deposits in Nong Le area eastern SiChuan. J Mineral Petrol 1:94–100

    Google Scholar 

  • Lin CL (1994) Metamorphic evolution of K-bearing rock series of the triassic and implication in search for potash salt in Sichuan Basin. Acia Geologica Sichuan 14(2):122–129

    Google Scholar 

  • Lin YT (1996) The Prospects for the searching for potash salt in terms of metamorphism of salt formation in Sichuan Basin. Acia Geol Sichuan 16(3):224–227

    Google Scholar 

  • Lin YT (2003) Study on sulfur isotopes of trias marine deposit gypsum and brines in the Sichuan Basin. J Salt Lake Res 11(2):1–7

    Google Scholar 

  • Lin YT, Cao SX, Xiong SJ (1997) Anhydrite and salt brine of triassic sequence in Sichuan Basin: composition and implication of sulfur isotope. Geol Chem Min 19(3):171–176

    Google Scholar 

  • Lin YT, Gao LM, Song HB (1998) Sulfur isotopic composition of the marine triassic in the sichuan basin and its geological significance. Geol Geochem 4(26):4–49

    Google Scholar 

  • Liu CL, Zhao YJ, Fang XM, Lv FL, Wang LC, Yan MD, Zhang H, Ding T (2015) Plate tectonics control on the distribution and formation of the marine potash deposits. Acta Geol Sin 89(11):1893–1907

    Google Scholar 

  • Luo G, Kump LR, Wang Y (2010) Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth Planet Sci Lett 300:101–111

    Article  Google Scholar 

  • Meng FW, Zhang ZL, Schifbauer JD, Zhou QG, Zhao MJ, Ni P, Liu WH, Ahsan N, Rehman SU (2019) The Yudomski event and subsequent decline: new evidence from S data of lower and middle Cambrian evaporites in the Tarim Basin, western China. Carbonates Evaporites 34(3):1117–1129

    Article  Google Scholar 

  • Micha H, Rainer B, Sylvain R, Erwin PK (2010) Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy. Palaeogeogr Palaeoclimatol Palaeoecol 290:65–70

    Article  Google Scholar 

  • Neretin LN, Böttcher ME, Grinenko VA (2003) Sulfur isotope geochemistry of the Black Sea water column. Chem Geol 200:59–69

    Article  Google Scholar 

  • Nielsen H, Ricke W (1964) Schwefel-isotopen verhältnisse von evaporiten aus deutschland; Ein beitrag zur kenntnis von δ34S im meerwasser-sulfat. Geochim Cosmochim Acta 28(5):577–591

    Article  Google Scholar 

  • Pierre C (1985) Isotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans. Chem Geol 53:191–196

    Article  Google Scholar 

  • Qing ZM (1989) Discussion on the origin of sulfur isotope difference in Triassic Marine system in sichuan basin. Acia Geologica Sichuan 9(4):8–11

    Google Scholar 

  • Shen LJ, Liu C (2018) The chemical evolution of seawater during the Phanerozoic: constriantson on evaporites deposition. Acta Petrol Sinica 34(6):1819–1834

    Google Scholar 

  • Shen Y, Farquhar J, Zhang H (2011) Multiple S-isotopic evidence for episodic shoaling of anoxic water during Later Permian mass extinction. Nat Commun 2:210

    Article  Google Scholar 

  • Song HY (2010) Excursion of sulfur isotope compositions in the lower triassic of South Guizhou, China. J Earth Sci 21:158–160

    Article  Google Scholar 

  • Stanley SM (1988) Paleozoic mass extinctions; shared patterns suggest global cooling as a common cause. Am J Sci 288(4):334–352

    Article  Google Scholar 

  • Sun YD, Joachimski MM, Wignall PB, Yan CB, Chen YL, Jiang HS, Wang LN, Lai XL (2012) Lethally hot temperatures during the early triassic greenhouse. Science 338(6105):366–370

    Article  Google Scholar 

  • Thode HG, Monster J (1967) The sulfur isotope abundances in evaporites and in the ancient oceans. In: Vinogradov AP (ed) Chemistry of the Earth's crust program for scientific translations, Jerusalem, Isr, pp 630-641

  • Thode HG, Monster J (1965) Sulfur-Isotope Geochemistry of Petroleum, Evaporites, and  Ancient Seas 71:367–377

  • Wan TF, Zhu H (2007) Positions and kinematics of Chinese continental blocks in reconstruction of global paleo-continents for paleozoic and triassic. Geoscience 21(1):1–13

    Google Scholar 

  • Wang ML (1982) The geological significance of polyhalite in depression Q. Geol Rev 28(1):28–37

    Google Scholar 

  • Wang SL, Zheng MP (2014) Discovery of triassic polyhalite in Changshou area of East Sichuan basin and its genetic study. Mineral Deposits 33(5):1045–1056

    Google Scholar 

  • Warren JK (2006) Evaporites: sediments resources and hydrocarbon. Springer, Berlin-Heidelberg

    Book  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (2002) Extent, duration, and nature of the Permian—Triassic superanoxic event. Geol Soc America Special Papers 395–413

  • Yin HF, Song HJ (2013) Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Sci China 43(10):1539–1552

    Google Scholar 

  • Yuan JQ (1974) Brief introduction of foreign polyhalite. Ind Min Process 12(6):47–58

  • Zheng MP, Yuan HR, Zhang YS, Liu XF, Chen WX, Li JS (2010) Regional distribution and prospects of potash in China. Acta Geol Sin 11:1523–1553

    Google Scholar 

  • Zheng YQ, Don SW, Li JH, Shi W (2011) Mesozoic muIti—directional compressional tectonics and formation—reformation of Sichuan basin. Geol China 38(02):233–250

    Google Scholar 

  • Zheng MP, Zhang YS, Shang WJ, Xing EY, Zhong JA, Gui BL, Peng Y (2018) Discovery of a new type of polyhalite potassium ore in Puguang region, northeastern Sichuan. Geol China 45(5):1074–1075

    Google Scholar 

  • Zhu GY, Zhang SC, Liang YB, Dai JX (2006) Stable sulfur isotopic composition of hydrogen sulfide and its genesis in Sichuan basin. Geochimica 35(4):432–444

    Google Scholar 

Download references

Funding

The funding has been received from China Geological Survey; SinoProbe with Grant No. 2017YFC0602806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, W., Zhang, Y., Li, K. et al. Evidence of sulfur isotope about the sedimentary environment of new type of polyhalite potassium ore in the northeast Sichuan Basin. Carbonates Evaporites 36, 56 (2021). https://doi.org/10.1007/s13146-021-00725-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00725-6

Keywords

Navigation