Skip to main content
Log in

Natural convection of a heated paddle wheel within a cross-shaped cavity filled with a nanofluid: ISPH simulations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The natural convection resultant from the uniform circular rotation of the paddle wheel in a cross-shaped porous cavity filled by \(\hbox {Al}_{2}\hbox {O}_{3}{-}\hbox {H}_{2}\hbox {O}\) was simulated by the ISPH method. A cross-shaped cavity’s two vertical area is saturated with a homogeneous porous medium, whereas the entire horizontal area is saturated with a heterogeneous porous medium. The paddle wheel rotates with a uniform circular velocity around the cavity’s center. The paddle wheel’s entire integrated body has temperature \(T_\mathrm{h}\). The temperature is set on the inside walls of a cross-shaped cavity \(T_\mathrm{c}\). The present geometry can be used to analyze and comprehend the thermo-physical behaviors of electronic motors. Angular velocity is set to \(\omega =7.15\), and thus, the natural convection case is only evaluated due to the low speed of inner rotating shape. The simulation results are graphically represented for temperature distributions, velocity fields, and tabular representations for the average Nusselt number. The important parameter ranges are the Rayleigh number \((10^{3} \le \hbox {Ra} \le 10^{6})\), paddle wheel length \((2.5 \le L_\mathrm{P} \le 14)\), nanoparticles parameter \((0 \le \phi \le 0.05)\), and Darcy parameter \((10^{-3} \le \hbox {Da} \le 10^{-5})\). The results show that increasing the length of the paddle wheel increases heat transfer and nanofluid movements within a cross-shaped cavity. In addition, increasing the Rayleigh number improves heat transfer and the nanofluid speed inside a cross-shaped cavity. When the Darcy parameter is reduced, the fluid flow is restricted to the rotating inner shape. The value of \({\overline{\hbox {Nu}}}\) powers as the length of the paddle wheel and \(\phi \) are increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(C_\mathrm{p}\) :

Heat capacity

Da:

Darcy parameter

\(D_\mathrm{eff}\) :

Effective diffusivity

\(\mathrm {g}\) :

Gravitational acceleration

\(H_\mathrm{C}\) :

Height of a cross-shaped cavity

\(L_\mathrm{C}\) :

Length of a cross-shaped cavity

\(K_{0}\) :

Permeability

\(K_\mathrm{B}\) :

Boltzmann’s coefficient

k :

Thermal conductivity

\(L_\mathrm{P}\) :

Paddle wheel length

P :

Dimensionless pressure

\(T_\mathrm{rf}\) :

Water freezing point

Pr:

Prandtl number

m :

Mass

t :

Dimensional time

T :

Dimensional temperature

\(r_{ij}\) :

Distance between particles

UV :

Dimensionless velocities

Ra:

Rayleigh number

uv :

Dimensional velocities

\(u_\mathrm{B}\) :

Brownian velocity

h :

Smooth length

p :

Dimensional pressure

\(R_\mathrm{c}\) :

Radius of a circular cylinder

\({\overline{\hbox {Nu}}}\) :

Average Nusselt number

xy :

Dimensional coordinates

W :

Smooth function

XY :

Dimensionless coordinates

\(\alpha \) :

Effective thermal diffusivity

\(\alpha _\mathrm{d}\) :

Constant of a smooth function

\(\beta \) :

Thermal expansion coefficient

\(\eta \) :

Constant (0.0001 h)

\(\eta _{1}\) :

Alter rate of \(\ln (K)\) in X-axis

\(\eta _{2}\) :

Alter rate of \(\ln (K)\) in Y-axis

\(\phi \) :

Nanoparticles parameter

\(\varepsilon \) :

Porosity

\(\gamma \) :

Relaxation coefficient

\(\Phi _{i}\) :

Any function

\(\rho ^\mathrm{num}\) :

Density in SPH form

\(\mu \) :

Dynamic viscosity

\(\tau \) :

Dimensionless time

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density

c:

Cold

h:

Hot

f:

Fluid

p:

Porous medium

nf:

Nanofluid

References

  1. Lopez, J.M., Marques, F., Mercader, I., Batiste, O.: Onset of convection in a moderate aspect-ratio rotating cylinder: Eckhaus–Benjamin–Feir instability. J. Fluid Mech. 590, 187–208 (2007)

    Article  Google Scholar 

  2. Zhang, W., Wei, Y., Dou, H.-S., Zhu, Z.: Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder. Int. Commun. Heat Mass Transf. 98, 143–154 (2018)

    Article  Google Scholar 

  3. Hayase, T., Humphrey, J.A.C., Greif, R.: Numerical calculation of convective heat transfer between rotating coaxial cylinders with periodically embedded cavities. J. Heat Transf. 114(3), 589–597 (1992)

    Article  Google Scholar 

  4. Wu-Shung, F., Cheng, C.-S., Shieh, W.-J.: Enhancement of natural convection heat transfer of an enclosure by a rotating circular cylinder. Int. J. Heat Mass Transf. 37(13), 1885–1897 (1994)

    Article  Google Scholar 

  5. Kareem, A.K., Gao, S.: Mixed convection heat transfer of turbulent flow in a three-dimensional lid-driven cavity with a rotating cylinder. Int. J. Heat Mass Transf. 112, 185–200 (2017)

    Article  Google Scholar 

  6. Alsabery, A.I., Tayebi, T., Chamkha, A.J., Hashim, I.: Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below. Int. Commun. Heat Mass Transf. 95, 197–209 (2018)

    Article  Google Scholar 

  7. Ghaddar, N.K., Thiele, F.: Natural convection over a rotating cylindrical heat source in a rectangular enclosure. Numer. Heat Transf. Part A Appl. 26(6), 701–717 (1994)

    Article  Google Scholar 

  8. Aly, A.M., Asai, M., Chamkha, A.J.: Analysis of unsteady mixed convection in lid-driven cavity included circular cylinders motion using an incompressible smoothed particle hydrodynamics method. Int. J. Numer. Methods Heat Fluid Flow 25, 2000–2021 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ku, X., Li, H., Lin, J., Jin, H.: Accumulation of heavy particles in circular bounded vortex flows induced by two small rotating cylinders. Int. J. Multiph. Flow 113, 71–88 (2019)

    Article  MathSciNet  Google Scholar 

  10. Sadeghi, M.S., Tayebi, T., Dogonchi, A.S., Nayak, M.K., Waqas, M.: Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid-filled wavy enclosure furnished with two circular cylinders. Int. Commun. Heat Mass Transf. 120, 104951 (2021)

    Article  Google Scholar 

  11. Nguyen, M.T., Aly, A.M., Lee, S.-W.: A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method. Int. J. Numer. Methods Heat Fluid Flow 28, 684–703 (2018)

    Article  Google Scholar 

  12. Aly, A.M., Raizah, Z.A.S.: Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures. Int. J. Mech. Sci. 146–147, 125–140 (2018)

    Article  Google Scholar 

  13. Christou, K., Radünz, W.C., Lashore, B., de Oliveira, F.B.S., Gomes, J.L.M.A.: Numerical investigation of viscous flow instabilities in multiphase heterogeneous porous media. Adv. Water Resour. 130, 46–65 (2019)

    Article  Google Scholar 

  14. Zhuang, Y.J., Zhu, Q.Y.: Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3d heterogeneous porous media. Int. J. Heat Mass Transf. 118, 686–707 (2018)

    Article  Google Scholar 

  15. He, B., Shihua, L., Gao, D., Chen, W., Lin, F.: Lattice Boltzmann simulation of double diffusive natural convection in heterogeneously porous media of a fluid with temperature-dependent viscosity. Chin. J. Phys. 63, 186–200 (2020)

    Article  MathSciNet  Google Scholar 

  16. Liu, C., Pan, M., Zheng, L., Lin, P.: Effects of heterogeneous catalysis in porous media on nanofluid-based reactions. Int. Commun. Heat Mass Transf. 110, 104434 (2020)

    Article  Google Scholar 

  17. Mahdi, R.A., Mohammed, H.A., Munisamy, K.M., Saeid, N.H.: Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)

    Article  Google Scholar 

  18. Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)

    Article  Google Scholar 

  19. Sheremet, M.A., Pop, I., Rahman, M.M.: Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 82, 396–405 (2015)

    Article  Google Scholar 

  20. Sheikholeslami, M., Ganji, D.D.: Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater. Des. 120, 382–393 (2017)

    Article  Google Scholar 

  21. Aly, A.M.: Natural convection of a nanofluid-filled circular enclosure partially saturated with a porous medium using ISPH method. Int. J. Numer. Methods Heat Fluid Flow 30, 4909–4932 (2020)

    Article  Google Scholar 

  22. Aly, A.M., Raizah, Z., Asai, M.: Natural convection from heated fin shapes in a nanofluid-filled porous cavity using incompressible smoothed particle hydrodynamics. Int. J. Numer. Methods Heat Fluid Flow 29, 4569–4597 (2019)

    Article  Google Scholar 

  23. Aly, A.M., Raizah, Z.A.S.: Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles. Phys. A Stat. Mech. Appl. 537, 122623 (2020)

    Article  MathSciNet  Google Scholar 

  24. Sadeghi, M.S., Tayebi, T., Dogonchi, A.S., Armaghani, T., Talebizadehsardari, P.: Analysis of hydrothermal characteristics of magnetic Al2O3-H2o nanofluid within a novel wavy enclosure during natural convection process considering internal heat generation. Math. Methods Appl. Sci. 1–13 (2020). https://doi.org/10.1002/mma.6520

  25. Dogonchi, A.S., Mishra, S.R., Karimi, N., Chamkha, A.J., Alhumade, H.: Interaction of fusion temperature on the magnetic free convection of nano-encapsulated phase change materials within two rectangular fins-equipped porous enclosure. J. Taiwan Inst. Chem. Eng. 124, 327–340, (2021)

  26. Dogonchi, A.S., Waqas, M., Seyyedi, S.M., Hashemi-Tilehnoee, M., Ganji, D.D.: A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity. Int. Commun. Heat Mass Transf. 111, 104430 (2020)

    Article  Google Scholar 

  27. Aly, A.M., Mohamed, E.M., Alsedais, N.: Double-diffusive convection from a rotating rectangle in a finned cavity filled by a nanofluid and affected by a magnetic field. Int. Commun. Heat Mass Transf. 126, 105363 (2021)

    Article  Google Scholar 

  28. Raizah, Z.A.S., Ahmed, S.E., Aly, A.M.: ISPH simulations of natural convection flow in e-enclosure filled with a nanofluid including homogeneous/heterogeneous porous media and solid particles. Int. J. Heat Mass Transf. 160, 120153 (2020)

    Article  Google Scholar 

  29. Zhuang, Y.J., Zhu, Q.Y.: Numerical study on combined buoyancy-Marangoni convection heat and mass transfer of power-law nanofluids in a cubic cavity filled with a heterogeneous porous medium. Int. J. Heat Fluid Flow 71, 39–54 (2018)

    Article  Google Scholar 

  30. Aly, A.M., Raizah, Z.: Double-diffusive convection of solid particles in a porous x-shaped cavity filled with a nanofluid. Phys. Scr. 96(1), 015301 (2020)

    Article  Google Scholar 

  31. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    Article  Google Scholar 

  32. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions: Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Q. Appl. Math. 4(1), 45–99 (1946)

    Article  MathSciNet  Google Scholar 

  33. Bonet, J., Kulasegaram, S.: Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods. Int. J. Numer. Methods Eng. 52(11), 1203–1220 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number (RGP.1/254/42). This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelraheem Mahmoud Aly.

Ethics declarations

Conflict of interest

The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.M., Mohamed, E.M. & Alsedais, N. Natural convection of a heated paddle wheel within a cross-shaped cavity filled with a nanofluid: ISPH simulations. Arch Appl Mech 91, 4441–4458 (2021). https://doi.org/10.1007/s00419-021-02019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02019-8

Keywords

Navigation