Skip to main content
Log in

Kinetic modeling and experimental study of photocatalytic process using graphene oxide/TiO2 composites. A case for wastewater treatment under sunlight

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) synthesised by the Hummers method and modified with TiO2 (xGO/TiO2 with x = 2, 5, 10, 15 and 30 wt%) is used to improve the photocatalytic reactivity of TiO2 for the dye removal. The synthesised samples were characterised by XRD, SEM/EDS, BET surface area, RDs, FTIR and EIS. Under sun irradiation, the photocatalysts exhibited efficient photoreactivity. The efficiency of the dye removal reaction increases, after 10 min of solar irradiation, from 14 to 81%upon increasing the % GO from 0 to 30%. The 30GO/TiO2 composites exhibit better photoactivity under sunlight irradiation compared to the other composites. Thus, after 10 min of irradiation, the MO removal efficiency with the 30GO/TiO2 photocatalyst reaches 84% of its maximum value (96%). In contrast, with TiO2 alone, the maximum yield of 81% can only be achieved after 60 min. The modification of the catalyst with GO made it possible to decrease the reaction time necessary to reach the steady-state. Both classical and fractal-like kinetic models applied to photodegradation data showed that the Weibull model is the best fit (RMSE, ARE, R2 and t0.5). Compared to pure TiO2, the 30GO/TiO2 catalyst shortens the degradation time by half; the photodegradation by xGO/TiO2 shows a decrease in mass transfer resistance inside a winding channel on the surface and in the fluid film surrounding the catalyst particles. This led to an enhancement in the mass transfer coefficient and intraparticle diffusivity on 30GO/TiO2 catalyst of about 19 and 13 times compared to the pure TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khamparia S, Jaspal D (2019) Technologies for treatment of colored wastewater from different industries. Handbook Environ Mater Manag 17:417–430

    Google Scholar 

  2. Albayati TM, Sabri AA, Alazawi RA (2016) Separation of methylene blue as pollutant of water by SBA-15 in a fixed-bed column. J Sci Eng 41:2409–2415

    CAS  Google Scholar 

  3. Market Analysis Report (2021) Grand view research (Report ID: 1–68038–545–8)

  4. Venkata Mohan S, Karthikeyan J (1997) Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. J Environ Poll 97:183–187

    Article  Google Scholar 

  5. Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. J Environ Poll 218:358–365

    Article  CAS  Google Scholar 

  6. Yang J, Qiu K (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. J Chem Eng 165:209–217

    Article  CAS  Google Scholar 

  7. Safardoust-Hojaghan H, Salavati-Niasari M (2017) Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J Clean Prod 148:31–36

    Article  CAS  Google Scholar 

  8. Sohrabi MR, Ghavami M (2008) Photocatalytic degradation of direct red 23 dye using UV/TiO2: effect of operational parameters. J Hazard Mater 153:1235–1239

    Article  CAS  PubMed  Google Scholar 

  9. Safarik I, Nymburska K, Safarikova M (1999) Adsorption of water-soluble organic dyes on magnetic charcoal. J Chem Technol Biotechnol 69:1–4

    Google Scholar 

  10. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. J Solar Energy Mater Solar Cells 77:65–82

    Article  CAS  Google Scholar 

  11. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photob C 6:186–205

    Article  CAS  Google Scholar 

  12. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arbian J Chem 12:908–931

    Article  CAS  Google Scholar 

  13. Beydoun D, Amal R, Low G, McEvoy S (1999) Role of Nanoparticles in Photocatalysis. J Nano Res 1:439–458

    Article  CAS  Google Scholar 

  14. Wellia DV, Kusumawati Y, Diguna LJ, Amal MI (2017) Introduction of nanomaterials for photocatalysis. In: Khan MM, Pradhan D, Sohn Y (eds) Nanoco visible light-induced photocatalysis. Springer, Berlin, pp 1–17

    Google Scholar 

  15. Yilkal DS, Abebe BG, Solomon GB (2017) Optical photocatalytic degradation of methylene blue using lignocellulose modified TiO2. Am J Opt Photo 5(5):55–58

    Article  Google Scholar 

  16. Khatamian M, Daneshvar N, Sabaee S (2010) heterogeneos photocatalytic decolorization of brown ng by TiO2 –UV process. Iranian J Chem Chem Eng 29:19–26

    CAS  Google Scholar 

  17. Zhao T, Zhao Y, Jiang L (2013) Nano-/microstructure improved photocatalytic activities of semiconductors. Philos Trans R Soc A 371:20120303

    Article  Google Scholar 

  18. Bhatkhande DS, Pangarkar VG, Beenackers A (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116

    Article  CAS  Google Scholar 

  19. Rajeshwar K (1995) Photoelectrochemistry and the environment. J Appl Electrochem 25:1067–1082

    Article  CAS  Google Scholar 

  20. Panahi PN, Mohajer S, Rasoulifard MH, Farajmand B (2020) Synthesis of Ag/AgCl/TiO2 nanocomposite and study of photocatalytic activity in VOCs removal from gas phase. Int J Environ Anal Chem 10:2. https://doi.org/10.1080/03067319.2020.1751146

    Article  CAS  Google Scholar 

  21. DiPaola A, GLópez E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mat 211–212:3–29

    Article  CAS  Google Scholar 

  22. Salehi M, Eshaghi A, Tajizadegan H (2019) Synthesis and characterization of TiO2/ZnCr2O4 core-shell structure and its photocatalytic and antibacterial activity. J Alloy Compd 778:148–155

    Article  CAS  Google Scholar 

  23. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. J Germ Chem Soc 52:7372–7408

    CAS  Google Scholar 

  24. Xing J, Fang WQ, Yangand HG, Zhao HJ (2012) Inorganic photocatalysts for overall water splitting. J Chem Asian 7:642–657

    Article  CAS  Google Scholar 

  25. Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132:11914–11916

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. ACS Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  27. Stoyanova A, Hitkova H, Nedelcheva AB, Iordanova R, Ivanova N, Sredkova M (2013) synthesis and antibacterial activity of TiO2/ZnO nanocomposites prepared via nonhydrolytic route. J Chem Technol Metall 48:154–161

    CAS  Google Scholar 

  28. Wu JM, Fang C-W, Lee L-T, Yeh H-H, Lin Y-H, Yeh P-H, Tsai L-N, Lin L-J (2011) Photoresponsive and ultraviolet to visible-light range photocatalytic properties of ZnO: Sb nanowires. J Electrochem Soc 158:K6–K10

    Article  CAS  Google Scholar 

  29. Rosales M, Zoltan T, Yadarola C, Mosquera E, Gracia F, García A (2019) The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity. J Mol Liq 281:59–69

    Article  CAS  Google Scholar 

  30. Bouzourâa M-B, Battie Y, En Naciri A, Araiedh F, Ducos F, Chaoui N (2019) N2 + ion bombardment effect on the band gap of anatase TiO2 ultrathin films. J Optic Mater 88:282–288

    Article  CAS  Google Scholar 

  31. Wang L, Han J, Feng J, Wang X, Su D, Hou X, Hou J, Liang J, Dou SX (2019) Simultaneously efficient light absorption and charge transport of CdS/TiO2 nanotube array toward improved photoelectrochemical performance. Intern J Hydrog Energy 44:30899–30909

    Article  CAS  Google Scholar 

  32. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photob C 9:171–192

    Article  CAS  Google Scholar 

  33. Liu L, Chen X (2014) Titanium dioxide nanomaterials: self-structural modifications. ACS Chem Rev 114:9890–9918

    Article  CAS  Google Scholar 

  34. Lam RCW, Leung MKH, Leung DYC, Vrijmoed LLP, Yam WC, Ng SP (2007) Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. J Solar Energy Mater Solar Cells 91:54–61

    Article  CAS  Google Scholar 

  35. Venkatachalam N, Palanichamy M, Arabindoo B, Murugesan V (2007) Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. J Mol Catal A 266:158–165

    Article  CAS  Google Scholar 

  36. Di Paola A, Garcı́a-López E, Ikeda S, Marcı̀ G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. J Cata Today 75:87–93

    Article  Google Scholar 

  37. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. J Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  38. Fan X, Zhang G, Zhang F (2015) Multiple roles of graphene in heterogeneous catalysis. J Chem Soc Rev 44:3023–3035

    Article  CAS  Google Scholar 

  39. Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S (2012) Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl Mater Interfaces 4:3636–3642

    Article  CAS  PubMed  Google Scholar 

  40. Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, Gerbaldi C (2014) Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. J Acta Mater 69:60–67

    Article  CAS  Google Scholar 

  41. Wang L, Feng J, Tong Y, Liang J (2010) A reduced graphene oxide interface layer for improved power conversion efficiency of aqueous quantum dots sensitized solar cells. Intern J Hydrog Energy 44:128–135

    Article  CAS  Google Scholar 

  42. Kusiak-Nejman E, Wanag A, Kowalczyk Ł, Kapica-Kozar J, Colbeau-Justin C, Mendez M, Medrano G, Morawski AW (2017) Graphene oxide-TiO2 and reduced graphene oxide-TiO2 nanocomposites: Insight in charge-carrier lifetime measurements. Catal Today 287:189–195

    Article  CAS  Google Scholar 

  43. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  CAS  Google Scholar 

  44. Najafi M, Kermanpur A, Rahimipour MR, Najafizadeh A (2017) Effect of TiO2 morphology on structure of TiO2-graphene oxide nanocomposite synthesized via a one-step hydrothermal method. J Alloy Compd 722:272–277

    Article  CAS  Google Scholar 

  45. Hu G, Yang J, Zhao D, Chen Y, Cao Y (2017) Research on photocatalytic properties of TiO2-graphene composites with different morphologies. J Mat Eng Perf 26:3263–3270

    Article  CAS  Google Scholar 

  46. Thomas RT, Rasheed PA, Sandhyarani N (2014) Synthesis of nanotitania decorated few-layer graphene for enhanced visible light driven photocatalysis. J Coll Inter Sci 428:214–221

    Article  CAS  Google Scholar 

  47. Jiang B, Tian C, Zhou W, Wang J, Xie Y, Pan Q, Ren Z, Dong Y, Fu D (2011) In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. J Chem Eur 17:8379–8387

    Article  CAS  Google Scholar 

  48. Štengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M (2013) Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits. ACS Chem Centr 7:1

    CAS  Google Scholar 

  49. Kurc B, Stefańska KS, Jakóbczyk P, Jesionowski T (2016) Titanium dioxide/graphene oxide composite and its application as an anode material in non-flammable electrolyte based on ionic liquid and sulfolane. J Solid State Electrochem 20:1971–1981

    Article  CAS  Google Scholar 

  50. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. ACS Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  51. Zhang XY, Li HP, Cui XL, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806

    Article  CAS  Google Scholar 

  52. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructuresfor enhanced Li-ion insertion. ACS Nano 3:907–914

    Article  CAS  PubMed  Google Scholar 

  53. Ahmadi N, Nemati A, Bagherzadeh M (2018) Synthesis and properties of Ce-doped TiO2-reduced graphene oxide nanocomposite. J Alloy Compd 742:986–995

    Article  CAS  Google Scholar 

  54. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. ACS Nano Res 3(10):701–705

    Article  CAS  Google Scholar 

  55. Kavitha MK, Pillai SC, Gopinath P, John H (2015) Hydrothermal synthesis of ZnO decorated reduced graphene oxide: understanding the mechanism of photocatalysis. J Environ Chem Eng 3:1194–1199

    Article  CAS  Google Scholar 

  56. Pejman M, Farshid GS, Abdulrahman B, Amir AR, Maryam F (2020) Enhanced photocatalytic activity of hydrothermally synthesized SrTiO3/rGO for gaseous toluene degradation in the air: modelling and process optimisation using response surface methodology. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1720009

    Article  Google Scholar 

  57. El-Hakam SA, Ahmed AI, El-dafrawy SM, Ibrahim AA, Adly MS (2016) Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of methylene blue dye under UV-visible light. J Mod Chem 8(1):27–37

    CAS  Google Scholar 

  58. Wang G, Feng W, Zeng XK, Wang Z, Feng C, Mc Carthy DT, Deletic A, Zhang X (2016) Highly recoverable TiO2–GO nanocomposites for storm water disinfection. J Wat Rese 94:363–370

    Article  CAS  Google Scholar 

  59. El-Shafai NM, El-Khouly ME, El-Kemary M, Ramadan MS, Derbalah AS, Masoud MS (2019) Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. J Ind Eng Chem 69:315–323

    Article  CAS  Google Scholar 

  60. Gao E, Wang W, Shang M, Xu J (2011) Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. ACS Phys Chem Chemic Phys 13:2887–2893

    Article  CAS  Google Scholar 

  61. Zhang B, Li Y, Wu T, Sun D, Chen W, Zhou X (2018) Magnetic iron oxide/graphene oxide nanocomposites: formation and interaction mechanism for efficient removal of methylene blue and p-tert-butylphenol from aqueous solution. J Mater Chem Phys 205:240–252

    Article  CAS  Google Scholar 

  62. Japandeep A, Kaur KM (2019) Facile fabrication of ternary nanocomposite of MgFe2O4-TiO2@GO for synergistic adsorption and photocatalytic degradation studies. J Ceramics Intern 45:8646–8659

    Article  CAS  Google Scholar 

  63. Liu R, Li X, Li S, Zhou G (2017) Three-dimensional titanate–graphene oxide composite gel with enhanced photocatalytic activity synthesized from nanofiber networks. J Catal Today 297:264–275

    Article  CAS  Google Scholar 

  64. Ahmed AS, Ahamad T, Ahmad N, Khan MZ (2019) Removal enhancement of acid navy blue dye by GO - TiO2 nanocomposites synthesized using sonication method. J Mater Chem Phys 238:121906

    Article  CAS  Google Scholar 

  65. Stefańska KS, Fluder M, Tylus W, Jesionowski T (2018) Investigation of amino-grafted TiO2/reduced graphene oxide hybrids as a novel photocatalyst used for decomposition of selected organic dyes. J Environ Manag 212:395–404

    Article  CAS  Google Scholar 

  66. Gao Y, Pu X, Zhang D, Ding G, Shao X, Ma J (2012) Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. J Carbon 50:4093–4101

    Article  CAS  Google Scholar 

  67. Sheshmani S, Kazemi A (2019) Graphene oxide and chitosan co-modified ZnS as photocatalyst and adsorbent: preparation, characterisation, removal of acid orange 7, kinetic studies, and adsorption isotherms. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1653458

    Article  Google Scholar 

  68. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. J Carbon 46:1994–1998

    Article  CAS  Google Scholar 

  69. Oliveira RN, Mancini MC, Oliveira FCS, Passos TM, Quilty B, Thiré RMSM, Mc Guinness GB (2016) FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Rev Mater 21:767

    CAS  Google Scholar 

  70. Fu Z, Zhang S, Fu Z (2019) Preparation of multicycle GO/TiO2 composite photocatalyst and study on degradation of methylene blue synthetic wastewater. J Appl Sci 16:3282

    Article  CAS  Google Scholar 

  71. Hunge YM, Yadav AA, Dhodamani AG, Suzuki N, Terashima C, Fujishima A, Mathe VL (2020) Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultras Sonochem 61:104849

    Article  CAS  Google Scholar 

  72. Gholami T, Mir N, Masjedi-Arani M, Noori E, Salavati-Niasari M (2014) Investigating the role of a Schiff-base ligand in the characteristics of TiO2 nano-particles: particle size, optical properties, and photo-voltaic performance of dye-sensitised solar cells. J Mater Sci Semicond Process 22:101–108

    Article  CAS  Google Scholar 

  73. Nabi G, Qurat-Ul-Ain Tahir MB, Nadeem Riaz K, Iqbal T, Rafique M, Hussain S, Raza W, Aslam I, Rizwan M (2020) Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. Int J Environ Anal Chem 10:2. https://doi.org/10.1080/03067319.2020.1722816

    Article  CAS  Google Scholar 

  74. Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta VK (2018) Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. Int J Biol Macromol 109:1239–1245

    Article  CAS  PubMed  Google Scholar 

  75. Méndez-Romero UA, Pérez-García SA, Xu X, Wang E, Licea-Jiméenez L (2019) Functionalized reduced graphene oxide with tunable band gap and good solubility in organic solvents. J Carbon 146:491–502

    Article  CAS  Google Scholar 

  76. Hou X, Liu X, Han J, Liu H, Yao J, Li D, Wang L, Liao B, Li J, Zhang R (2020) Enhanced photoelectrocatalytic degradation of organic pollutants using TiO2 nanotubes implanted with nitrogen ions. J Mater Sci 55:5843–5860

    Article  CAS  Google Scholar 

  77. Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Amboina A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania−graphene nanocomposites. J Phys Chem 113:19812–19823

    CAS  Google Scholar 

  78. Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Figueiredo JL, Faria JL, Falarasand P, Silva AMT (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orage dye. J App Cata B 123:241–256

    Article  CAS  Google Scholar 

  79. Karouia S, Ben Arfi R, Mougin K, Ghorbal A, Assadi AA, Amrane A (2020) Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models. J Hazard Mat 387:121675

    Article  CAS  Google Scholar 

  80. Villacañas F, Pereira MFR, Órfão JJM, Figueiredo JL (2006) Adsorption of simple aromatic compounds on activated carbons. J Coll Inter Sci 293:128–136

    Article  CAS  Google Scholar 

  81. Lachheb H, Dappozze F, Guillard HAC (2012) Adsorption and photocatalyticdegradation of cysteine in presence of TiO2. J Photochem Photobio A 246:1–7

    Article  CAS  Google Scholar 

  82. Ustunol IB, Gonzalez-Pech NI, Grassian VH (2019) pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. J Coll Inter Sci 554:362–375

    Article  CAS  Google Scholar 

  83. Lee DK, Cho IS, Lee S, Bae ST, Noh JH, Kim DW, Hon KS (2010) Effect of carbon content on the photocatalytic activity of C/BiVO4 composite under visible light irradiation. Mater Chem Phys 119:106–111

    Article  CAS  Google Scholar 

  84. Nguyen CH, Juang R-S (2019) Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. J Ind Eng Chem 76:296–309

    Article  CAS  Google Scholar 

  85. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. J Chem Eng 170:226–232

    Article  CAS  Google Scholar 

  86. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. ACS Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  87. Bell NJ, Ng YH, Du AD, Coster H, Smith SC, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009

    Article  CAS  Google Scholar 

  88. Wakkel M, Khiari B, Zagrouba F (2019) Textile wastewater treatment by agro-industrial waste: equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lingo cellulosic adsorbent. J Taiwan Inst Chem Eng 96:439–452

    Article  CAS  Google Scholar 

  89. Brouers F, Sotolongo-Costa O (2006) Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). J Phys A Stat Mech Its Appl 368:165–175

    Article  Google Scholar 

  90. Brouers F, Al-Musawi TJ (2018) Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials. J Hazard Mater 350:162–168

    Article  CAS  PubMed  Google Scholar 

  91. Al-Musawi TJ, Brouers F, Zarrabi M (2017) Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers-Sotolongo fractal equation. Environ Sci Pollut Res Int 24:4048–4057

    Article  CAS  PubMed  Google Scholar 

  92. Vargas AMM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonixregia): study of adsorption isotherms and kinetic models. J Chem Eng 168:722–730

    Article  CAS  Google Scholar 

  93. Sun Z, Zheng L, Zheng S, Frost RL (2013) Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(VI). J Coll Interf Sci 404:102–109

    Article  CAS  Google Scholar 

  94. Emeline AV, Ryabchuk VK, Serpone N (2005) Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections. J Phys Chem B 109:18515–18521

    Article  CAS  PubMed  Google Scholar 

  95. Montagnaro F, Balsamo M, Salatino P (2016) A single particle model of lime sulphation with a fractal formulation of product layer diffusion. Chem Eng Sci 156:115–120

    Article  CAS  Google Scholar 

  96. Duong DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London, p 337

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Directorate General for Scientific Research and Technological Development DGRSDT and they are thanked for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Boudjemaa.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deflaoui, O., Boudjemaa, A., Sabrina, B. et al. Kinetic modeling and experimental study of photocatalytic process using graphene oxide/TiO2 composites. A case for wastewater treatment under sunlight. Reac Kinet Mech Cat 133, 1141–1162 (2021). https://doi.org/10.1007/s11144-021-02022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02022-8

Keywords

Navigation