Skip to main content
Log in

Gas-Phase NMR of Hyperpolarized Propane with 1H-to-13C Polarization Transfer by PH-INEPT

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work we demonstrate the possibility to transfer parahydrogen-derived 1H polarization to 13C nuclei in the gas phase using PH-INEPT-based pulse sequences. The propane with hyperpolarized 1H nuclei was produced via hydrogenation of propylene (at natural 13C abundance) with parahydrogen over the heterogeneous 1 wt% Rh/TiO2 catalyst at 7.05 T magnetic field of a NMR spectrometer. The apparent proton polarization was estimated as 1.8 ± 0.4%, taking into account the polarization losses caused by spin relaxation. The optimal inter-pulse delays for both the PH-INEPT and the PH-INEPT + sequences were determined via the numerical calculations considering the full spin system of propane which includes eight protons and one 13C nucleus. The application of the optimized PH-INEPT polarization transfer sequence resulted in the 13C polarization values of 0.07 ± 0.01% and 0.030 ± 0.006% for the methyl group of [1-13C]propane and the methylene group of [2-13C]propane, respectively. The experimental dependence of the 13C polarization values for [1-13C]propane and [2-13C]propane on the inter-pulse delay τ1 of the PH-INEPT sequence is in a good agreement with the simulation. The resulting 13C polarization using PH-INEPT + sequence is ~ 2.5 times lower than that via PH-INEPT, which is also consistent with the numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.A. Green, R.W. Adams, S.B. Duckett, R.E. Mewis, D.C. Williamson, G.G.R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 67, 1 (2012)

    Article  Google Scholar 

  2. C.R. Bowers, D.P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987)

    Article  Google Scholar 

  3. M.G. Pravica, D.P. Weitekamp, Chem. Phys. Lett. 145, 255 (1988)

    Article  ADS  Google Scholar 

  4. C.R. Bowers, in Encycl. Magn. Reson., ed. by R.K. Harris, R. Wasylishen (John Wiley, Chichester, 2007), p. 750. https://doi.org/10.1002/9780470034590.emrstm0489

  5. A. Eichhorn, A. Koch, J. Bargon, J. Mol. Catal. A Chem. 174, 293 (2001)

    Article  Google Scholar 

  6. L.-S. Bouchard, S.R. Burt, M.S. Anwar, K.V. Kovtunov, I.V. Koptyug, A. Pines, Science 319, 442 (2008)

    Article  ADS  Google Scholar 

  7. K.V. Kovtunov, I.E. Beck, V.I. Bukhtiyarov, I.V. Koptyug, Angew. Chem. Int. Ed. 47, 1492 (2008)

    Article  Google Scholar 

  8. K.V. Kovtunov, O.G. Salnikov, I.V. Skovpin, N.V. Chukanov, D.B. Burueva, I.V. Koptyug, Pure Appl. Chem. 92, 1029 (2020)

    Article  Google Scholar 

  9. E.V. Pokochueva, D.B. Burueva, O.G. Salnikov, I.V. Koptyug, ChemPhysChem (2021). https://doi.org/10.1002/cphc.202100153

    Article  Google Scholar 

  10. A. Kopanski, F. Hane, T. Li, M. Albert, in 25th ISMRM Conf. (Honolulu, HI, USA, 2017), p. 2162

  11. K.V. Kovtunov, I.V. Koptyug, M. Fekete, S.B. Duckett, T. Theis, B. Joalland, E.Y. Chekmenev, Angew. Chem. Int. Ed. 59, 17788 (2020)

    Article  Google Scholar 

  12. K.V. Kovtunov, M.L. Truong, D.A. Barskiy, I.V. Koptyug, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, Chem. A Eur. J. 20, 14629 (2014)

    Article  Google Scholar 

  13. O.G. Salnikov, P. Nikolaou, N.M. Ariyasingha, K.V. Kovtunov, I.V. Koptyug, E.Y. Chekmenev, Anal. Chem. 91, 4741 (2019)

    Article  Google Scholar 

  14. O.G. Salnikov, K.V. Kovtunov, P. Nikolaou, L.M. Kovtunova, V.I. Bukhtiyarov, I.V. Koptyug, E.Y. Chekmenev, ChemPhysChem 19, 2621 (2018)

    Article  Google Scholar 

  15. Y. Du, R. Behera, R.V. Maligal-Ganesh, M. Chen, E.Y. Chekmenev, W. Huang, C.R. Bowers, J. Phys. Chem. C 124, 8304 (2020)

    Article  Google Scholar 

  16. O.G. Salnikov, A. Svyatova, L.M. Kovtunova, N.V. Chukanov, V.I. Bukhtiyarov, K.V. Kovtunov, E.Y. Chekmenev, I.V. Koptyug, Chem. A Eur. J. 27, 1316 (2021)

    Article  Google Scholar 

  17. L.T. Kuhn, J. Bargon, in Situ NMR Methods Catal., ed. by J. Bargon, L.T. Kuhn (Springer, Berlin, Heidelberg, 2006), p. 25. https://doi.org/10.1007/128_064

  18. F. Reineri, E. Cavallari, C. Carrera, S. Aime, Magn. Reson. Mater. Phys. Biol. Med. 34, 25 (2021)

    Article  Google Scholar 

  19. S. Siddiqui, S. Kadlecek, M. Pourfathi, Y. Xin, W. Mannherz, H. Hamedani, N. Drachman, K. Ruppert, J. Clapp, R. Rizi, Adv. Drug Deliv. Rev. 113, 3 (2017)

    Article  Google Scholar 

  20. B. Joalland, A.B. Schmidt, M.S.H. Kabir, N.V. Chukanov, K.V. Kovtunov, I.V. Koptyug, J. Hennig, J.-B. Hövener, E.Y. Chekmenev, Anal. Chem. 92, 1340 (2020)

    Article  Google Scholar 

  21. H. Jóhannesson, O. Axelsson, M. Karlsson, Comptes Rendus Phys. 5, 315 (2004)

    Article  ADS  Google Scholar 

  22. E. Cavallari, C. Carrera, M. Sorge, G. Bonne, A. Muchir, S. Aime, F. Reineri, Sci. Rep. 8, 8366 (2018)

    Article  ADS  Google Scholar 

  23. S. Knecht, J.W. Blanchard, D. Barskiy, E. Cavallari, L. Dagys, E. van Dyke, M. Tsukanov, B. Bliemel, K. Münnemann, S. Aime, F. Reineri, M.H. Levitt, G. Buntkowsky, A. Pines, P. Blümler, D. Budker, J. Eills, Proc. Natl. Acad. Sci. 118, e2025383118 (2021)

    Article  Google Scholar 

  24. A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, J. Chem. Phys. 139, 244201 (2013)

    Article  ADS  Google Scholar 

  25. A.S. Kiryutin, A.N. Pravdivtsev, K.L. Ivanov, Y.A. Grishin, H.-M. Vieth, A.V. Yurkovskaya, J. Magn. Reson. 263, 79 (2016)

    Article  ADS  Google Scholar 

  26. K. Golman, O. Axelsson, H. Jóhannesson, S. Månsson, C. Olofsson, J.S.S. Petersson, Magn. Reson. Med. 46, 1 (2001)

    Article  Google Scholar 

  27. M. Goldman, H. Jóhannesson, O. Axelsson, M. Karlsson, Magn. Reson. Imaging 23, 153 (2005)

    Article  Google Scholar 

  28. M. Roth, A. Koch, P. Kindervater, J. Bargon, H.W. Spiess, K. Münnemann, J. Magn. Reson. 204, 50 (2010)

    Article  ADS  Google Scholar 

  29. G. Stevanato, J. Eills, C. Bengs, G. Pileio, J. Magn. Reson. 277, 169 (2017)

    Article  ADS  Google Scholar 

  30. G. Stevanato, J. Magn. Reson. 274, 148 (2017)

    Article  ADS  Google Scholar 

  31. S. Bär, T. Lange, D. Leibfritz, J. Hennig, D. von Elverfeldt, J.-B. Hövener, J. Magn. Reson. 225, 25 (2012)

    Article  ADS  Google Scholar 

  32. A.N. Pravdivtsev, A.V. Yurkovskaya, N.N. Lukzen, K.L. Ivanov, H.-M. Vieth, J. Phys. Chem. Lett. 5, 3421 (2014)

    Article  Google Scholar 

  33. M. Haake, J. Natterer, J. Bargon, J. Am. Chem. Soc. 118, 8688 (1996)

    Article  Google Scholar 

  34. M. Goldman, H. Jóhannesson, Comptes Rendus Phys. 6, 575 (2005)

    Article  ADS  Google Scholar 

  35. S. Kadlecek, K. Emami, M. Ishii, R. Rizi, J. Magn. Reson. 205, 9 (2010)

    Article  ADS  Google Scholar 

  36. C. Cai, A.M. Coffey, R.V. Shchepin, E.Y. Chekmenev, K.W. Waddell, J. Phys. Chem. B 117, 1219 (2013)

    Article  Google Scholar 

  37. C.J. Jameson, in Gas phase NMR. ed. by K. Jackowski, M. Jaszuński (The Royal Society of Chemistry, Cambridge, 2016), p. 1

    Google Scholar 

  38. K. Jackowski, M. Jaszuński, Concepts Magn. Reson. Part A 30A, 246 (2007)

    Article  Google Scholar 

  39. E.V. Pokochueva, D.B. Burueva, L. Kovtunova, A.V. Bukhtiyarov, A.Y. Gladky, K.V. Kovtunov, I.V. Koptyug, V.I. Bukhtiyarov, Faraday Discuss. 229, 161 (2021)

    Article  ADS  Google Scholar 

  40. D.A. Barskiy, O.G. Salnikov, K.V. Kovtunov, I.V. Koptyug, J. Phys. Chem. A 119, 996 (2015)

    Article  Google Scholar 

  41. O.G. Salnikov, L.M. Kovtunova, I.V. Skovpin, V.I. Bukhtiyarov, K.V. Kovtunov, I.V. Koptyug, ChemCatChem 10, 1178 (2018)

    Article  Google Scholar 

  42. P.A. Hays, T. Schoenberger, Anal. Bioanal. Chem. 406, 7397 (2014)

    Article  Google Scholar 

  43. K.V. Kovtunov, D.A. Barskiy, A.M. Coffey, M.L. Truong, O.G. Salnikov, A.K. Khudorozhkov, E.A. Inozemtseva, I.P. Prosvirin, V.I. Bukhtiyarov, K.W. Waddell, E.Y. Chekmenev, I.V. Koptyug, Chem. A Eur. J. 20, 11636 (2014)

    Article  Google Scholar 

  44. K.V. Kovtunov, I.V. Koptyug, in Magn. Reson. Microsc. Spat. Resolv. NMR Tech. Appl., ed. by S.L. Codd, J.D. Seymour (Wiley‐VCH, Weinheim, 2008), p. 99. https://doi.org/10.1002/9783527626052.ch7

  45. D.A. Barskiy, K.V. Kovtunov, E.Y. Gerasimov, M.A. Phipps, O.G. Salnikov, A.M. Coffey, L.M. Kovtunova, I.P. Prosvirin, V.I. Bukhtiyarov, I.V. Koptyug, E.Y. Chekmenev, J. Phys. Chem. C 121, 10038 (2017)

    Article  Google Scholar 

  46. N.M. Ariyasingha, O.G. Salnikov, K.V. Kovtunov, L.M. Kovtunova, V.I. Bukhtiyarov, B.M. Goodson, M.S. Rosen, I.V. Koptyug, J.G. Gelovani, E.Y. Chekmenev, J. Phys. Chem. C 123, 11734 (2019)

    Article  Google Scholar 

  47. R.E.D. McClung, in Encycl. Magn. Reson., ed. by R.K. Harris, R.L. Wasylishen (John Wiley, Chichester, 2007), p. 1. https://doi.org/10.1002/9780470034590.emrstm0524

  48. C.J. Jameson, A.K. Jameson, N.C. Smith, J.K. Hwang, T. Zia, J. Phys. Chem. 95, 1092 (1991)

    Article  Google Scholar 

  49. M.M. Folkendt, B.E. Weiss-Lopez, N.S. True, J. Phys. Chem. 92, 4859 (1988)

    Article  Google Scholar 

  50. R.E. Wasylishen, T. Schaefer, Can. J. Chem. 52, 3247 (1974)

    Article  Google Scholar 

  51. A. Svyatova, V.P. Kozinenko, N.V. Chukanov, D.B. Burueva, E.Y. Chekmenev, Y.W. Chen, D.W. Hwang, K.V. Kovtunov, I.V. Koptyug, Sci. Rep. 11, 5646 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

VPK thanks Prof. Konstantin L. Ivanov, deceased on March 5, 2021 at the age of 44, for the expert guidance in his mastering the spin dynamics calculations. All authors acknowledge Prof. Konstantin L. Ivanov and Dr. Kirill V. Kovtunov who initiated this work and made a major contribution to the field of hyperpolarized NMR.

Funding

The HET-PHIP experiments performed by DBB, SVS, OGS, and IVK were funded by Russian Foundation for Basic Research (RFBR; Grants no. 19-29-10003 and 19-33-60045). The spin dynamics calculation performed by VPK was supported by RFBR grant no. 19-29-10028. The catalyst preparation performed by LMK was supported by the Ministry of Science and Higher Education of the Russian Federation (project # AAAA-A21-121011390011-4). EYC thanks the following for funding support: DOD CDMRP W81XWH15-1-0271 and W81XWH-20-10576, National Heart, Lung, and Blood Institute 1 R21 HL154032-01 and NSF CHE-1904780.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KVK; supervision: OGS, KVK, IVK, EYC; resources—catalyst: LMK, VIB; investigation—DBB, VPK, OGS, SVS; writing–original draft preparation: DBB, VPK, SVS; writing–review and editing: OGS, IVK, EYC. The manuscript was reviewed by all authors.

Corresponding author

Correspondence to Igor V. Koptyug.

Ethics declarations

Conflict of Interest

EYC declares a stake of ownership in XeUS Technologies LTD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kirill V. Kovtunov: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burueva, D.B., Kozinenko, V.P., Sviyazov, S.V. et al. Gas-Phase NMR of Hyperpolarized Propane with 1H-to-13C Polarization Transfer by PH-INEPT. Appl Magn Reson 53, 653–669 (2022). https://doi.org/10.1007/s00723-021-01377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01377-4

Navigation