Skip to main content
Log in

CNTFET based voltage differencing current conveyor low power and universal filter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents carbon nanotube field effect transistor (CNTFET) implementation of voltage differencing current conveyor (VDCC). We propose new topology of multi input–single output (MISO) CNTFET VDCC universal filter using only 2 resistors and 2 capacitors. The CNTFET VDCC filter circuit can be tuned electronically only by changing transconductance value, and there is no need for component matching conditions. The proposed CNTFET VDCC filter shows 2711 times less power consumption compared to 0.18 µm TSMC technology and around 500 times reduction in chip area. Center frequency shift between 0.33 and 2.45 MHz was observed by varying transconductance value. Besides, the quality factor of VDCC filter was improved by increasing resistor value. All simulations were performed by using SPICE simulation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pacheco-Sanchez, A., Fuchs, F., Mothes, S., Zienert, A., Schuster, J., Gemming, S., & Claus, M. (2018). Feasible device architectures for ultrascaled CNTFETs. IEEE Transactions on Nanotechnology., 17(1), 100.

    Article  Google Scholar 

  2. Frégonèse, S., Maneux, C., & Zimmer, T. (2011). A compact model for dual-gate one-dimensional FET: application to carbon-nanotube FETs. IEEE Transactions on Electron Devices, 58(1), 206.

    Article  Google Scholar 

  3. Al-Shaggah, A. M., Rjoub, A. M. and Khasawneh, M.A. (2015). A statistical CNT channel model for gate to channel capacitance of carbon nano tube field effect transistor. In 9th JIEEEC.

  4. Farhana, S., Alam, A.H.M. Z., Khan S. and Motakabber, S.M.A. (2014). CNTFET SPICE model: design of a carbon nanotube field effect transistor. In 5th International Conference on Computer & Communication Engineering.

  5. Gelao, G., Marani, R., Diana, R., & Perri, A. G. (2011). A Semiempirical SPICE model for n-type conventional CNTFETs. IEEE Transactions on Nanotechnology, 10(3), 506.

    Article  Google Scholar 

  6. Raychowdhury, A., Mukhopadhyay, S., & Roy, K. (2004). A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(10), 1411.

    Article  Google Scholar 

  7. Marani, R., & Perri, A. G. (2018). Cntfet-based design of analogue circuits. International Journal of Advances in Engineering & Technology, 11, 90.

    Google Scholar 

  8. Deng, J., & Wong, H.-S.P. (2007). A Compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application: part i: model of the intrinsic channel region. IEEE Transactions on Electron Devices., 54(12), 3186.

    Article  Google Scholar 

  9. Deng, J., & Wong, H.-S.P. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application: part II—full device model and circuit performance benchmarking. IEEE Transactions on Electron Devices, 54(12), 3195.

    Article  Google Scholar 

  10. Zanjani, S. M. A., Dousti, M., & Dolatshahi, M. (2019). A new low-power, universal, multi-mode Gm-C filter in CNTFET technology. Microelectronics Journal. https://doi.org/10.1016/j.mejo.2019.01.003

    Article  Google Scholar 

  11. Cho, G., & Lombardi, F. (2016). Design and process variation analysis of CNTFET-based ternary memory cells. Integration, The VLSI Journal, 54, 97–108.

    Article  Google Scholar 

  12. Jooq, M. K. Q., Mir, A., Mirzakuchaki, S., & Farmani, A. (2019). Design and performance analysis of wrap-gate CNTFET-based ring oscillators for IoT applications. Integration, The VLSI Journal., 70, 116.

    Article  Google Scholar 

  13. Taghavi, A., Carta, C., Meister, T., Ellinger, F., Claus, M., & Schroter, M. (2017). A CNTFET Oscillator at 461MHz. IEEE Microwave and Wireless Components Letters, 27(6), 578.

    Article  Google Scholar 

  14. Rahman, F., Zaidi, A. M., Anam, N., Akter, A. and Faiz, R. (2011). A study on the performance evaluation of a CNT-OPAMP by variation of SWNTs in the CNFET-Channel Region. In RSM2011 Proc.

  15. Usmani, F. A. and Hasan, M. (2009). Design and parametric analysis of 32nm OPAMP in CMOS and CNFET technologies for optimum performance. In Proceedings of the Argentine School of Micro-Nanoelectronics, Technology and Applications.

  16. Jogad, S., Afzal, N. and Loan, S.A. (2019). Sinusoidal oscillator using 32-nm CNTFET- OTA. In International Conference on Electrical, Electronics and Computer Engineering (UPCON).

  17. Prasad, D., Tayal, D., Yadav, A., Singla, L., & Haseeb, Z. (2019). CNTFET-based OTRA and its application as inverse low pass filter. International Journal of Telecommunications, 65(4), 665.

    Google Scholar 

  18. Singla, L., Prasad, D., & Mainuddin, I. S. S. (2019). Current mode biquad using CNTFET-based ZC-CITA. International Journal of Pure and Applied Physics, 57, 90–94.

    Google Scholar 

  19. Mamatov, I., Ozcelep, Y., & Kacar, F. (2021). Voltage differencing buffered amplifier based low power high frequency and universal filter using 32nm CNTFET technology. Microelectronics Journal, 107, 104948.

    Article  Google Scholar 

  20. Jogad, S., Loan, S. A., Afzal, N., & Alharbi, A. G. (2021). CNTFET-based class AB Current Conveyor II: Design, analysis and waveform generation application. International Journal of Numerical Modelling Electronics., 34, e2783.

    Google Scholar 

  21. Masud, M. I., A’ain, A. K. B., Khan, I. A., & Husin, N. S. (2021). CNTFET-based Voltage mode MISO active only biquadratic filter for multi GHz frequency applications. Circuits Systems and Signal Processing. https://doi.org/10.1007/s00034-021-01699-5

    Article  Google Scholar 

  22. Tripathi, S. K., & Joshi, A. M. (2021). On the design of improved resistive sensor interface using 32nm CNTFET. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2021.02.753

    Article  Google Scholar 

  23. Kacar, F., Yesil, A., Minaei, S., & Kuntman, H. (2014). Positive/negative lossy/lossless grounded inductance simulatorsemploying single VDCC and only two passive elements. International Journal of Electronics andCommunications (AEÜ), 68, 73–78.

    Article  Google Scholar 

  24. Guo, J. (2004). Carbon nanotube electronics: Modeling, physics and applications. Purdue University.

    Google Scholar 

  25. Dresselhaues, M. S., Dresselhaues, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33(7), 883–891.

    Article  Google Scholar 

  26. A Quick User Guide on Stanford University Carbon Nanotube Field Effect Transistors (CNFET) HSPICE Model V. 2.2.1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islombek Mamatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamatov, I., Özçelep, Y. & Kaçar, F. CNTFET based voltage differencing current conveyor low power and universal filter. Analog Integr Circ Sig Process 110, 127–137 (2022). https://doi.org/10.1007/s10470-021-01905-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01905-z

Keywords

Navigation