Skip to main content

Advertisement

Log in

Modelling the mechanical behaviour of soils using machine learning algorithms with explicit formulations

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study systematically presents the application of machine learning (ML) algorithms for constructing a constitutive model for soils. A genetic algorithm is integrated with ML algorithms to determine the global optimum model, and the k-fold cross-validation method is used to enhance the models’ robustness. Three typical ML algorithms with formulations explicitly expressed [i.e., back-propagation neural network (BPNN), extreme learning machine (ELM) and evolutionary polynomial regression (EPR)], and two modelling strategies (i.e. total or incremental stress–strain strategies) are used. A synthetic database is first generated based on a simple constitutive model to objectively evaluate the performance of three ML algorithms and two modelling strategies. Next, the optimum ML algorithm and the well evaluated modelling strategy are applied to experimental tests for examining its robustness. All results indicate that a BPNN-based constitutive model using the incremental stress–strain strategy performs best in modelling the mechanical behaviour of soils in terms of interpolation and extrapolation abilities, followed by ELM and then EPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Badawy MF, Msekh MA, Hamdia KM, Steiner MK, Lahmer T, Rabczuk T (2017) Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probabilist Eng Mech 50:64–75

    Article  Google Scholar 

  2. Basheer IA (2000) Selection of methodology for neural network modeling of constitutive hystereses behavior of soils. Comput-Aided Civ Inf 15:440–458

    Article  Google Scholar 

  3. Cabalar AF, Cevik A (2011) Triaxial behavior of sand–mica mixtures using genetic programming. Expert Syst Appl 38(8):10358–10367

    Article  Google Scholar 

  4. Chang CS, Hicher PY (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42(14):4258–4277

    Article  MATH  Google Scholar 

  5. Chen RP, Zhang P, Kang X, Zhong ZQ, Liu Y, Wu HN (2019) Prediction of maximum surface settlement caused by EPB shield tunneling with ANN methods. Soils Found 59(2):284–295

    Article  Google Scholar 

  6. Chen RP, Zhang P, Wu HN, Wang ZT, Zhong ZQ (2019) Prediction of shield tunneling-induced ground settlement using machine learning techniques. Front Struct Civ Eng 13(6):1363–1378

    Article  Google Scholar 

  7. Ellis GW, Yao C, Zhao R, Penumadu D (1995) Stress-strain modeling of sands using artificial neural networks. J Geotech Eng 121(5):429–435

    Article  Google Scholar 

  8. Faramarzi A, Javadi AA, Alani AM (2012) EPR-based material modelling of soils considering volume changes. Comput Geosci-UK 48:73–85

    Article  Google Scholar 

  9. Feng XT, Chen BR, Yang CX, Zhou H, Ding X (2006) Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. Int J Rock Mech Min 43(5):789–801

    Article  Google Scholar 

  10. Feng XT, Li SJ, Liao HJ, Yang CX (2002) Identification of non-linear stress-strain-time relationship of soils using genetic algorithm. Int J Numer Anal Met 26(8):815–830

    Article  MATH  Google Scholar 

  11. Gajo A, Wood M (1999) Severn-Trent sand: a kinematic-hardening constitutive model: the q–p formulation. Geotechnique 49(5):595–614

    Article  Google Scholar 

  12. Gao W, Ge M, Chen D, Wang X (2016) Back analysis for rock model surrounding underground roadways in coal mine based on black hole algorithm. Eng Comput-Germany 32(4):675–689

    Article  Google Scholar 

  13. Gholamy A, Kreinovich V, Kosheleva O (2018) Why 70/30 or 80/20 relation between training and testing sets: a pedagogical explanation. Int J Intell Technol Appl Stat 11(2):105–111

    Google Scholar 

  14. Giustolisi O, Savic DA (2006) A symbolic data-driven technique based on evolutionary polynomial regression. J Hydroinform 8(4):235–237

    Google Scholar 

  15. Guo X, Dias D, Carvajal C, Peyras L, Breul P (2018) Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion. Eng Struct 174:295–307

    Article  Google Scholar 

  16. Habibagahi G, Bamdad A (2003) A neural network framework for mechanical behavior of unsaturated soils. Can Geotech J 40(3):684–693

    Article  Google Scholar 

  17. Hasanipanah M, Noorian-Bidgoli M, Jahed Armaghani D, Khamesi H (2016) Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Eng Comput-Germany 32(4):705–715

    Article  Google Scholar 

  18. Hattab M, Hicher PY (2004) Dilating behaviour of overconsolidated clay. Soils Found 44(2):27–40

    Article  Google Scholar 

  19. He S, Li J (2009) Modeling nonlinear elastic behavior of reinforced soil using artificial neural networks. Appl Soft Comput 9(3):954–961

    Article  Google Scholar 

  20. Holland JH. Adaptation in natural and artificial system: University of Michigan Press, 1975.

  21. Hu X, Zhang Y, Guo L, Wang J, Cai Y, Fu H et al (2018) Cyclic behavior of saturated soft clay under stress path with bidirectional shear stresses. Soil Dyn Earthq Eng 104:319–328

    Article  Google Scholar 

  22. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  23. Iebeling K, Milton B (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3):215–236

    Article  Google Scholar 

  24. Javadi AA, Rezania M (2009) Applications of artificial intelligence and data mining techniques in soil modeling. Geomech Eng 1(1):53–74

    Article  Google Scholar 

  25. Jefferies M (1993) Nor-Sand: a simle critical state model for sand. Geotechnique 43(1):91–103

    Article  Google Scholar 

  26. Jin Y-F, Wu Z-X, Yin Z-Y, Shen JS (2017) Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech 12(6):1329–1351

    Article  Google Scholar 

  27. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotech 11(5):1131–1145

    Article  Google Scholar 

  28. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Met 40(8):1219–1240

    Article  Google Scholar 

  29. Jin Y-F, Yin Z-Y, Wu Z-X, Daouadji A (2018) Numerical modeling of pile penetration in silica sands considering the effect of grain breakage. Finite Elem Anal Des 144:15–29

    Article  Google Scholar 

  30. Jin Y-F, Yin Z-Y, Zhou W-H, Huang H-W (2019) Multi-objective optimization-based updating of predictions during excavation. Eng Appl Artif Intel 78:102–123

    Article  Google Scholar 

  31. Jin YF, Yin ZY, Wu ZX, Zhou WH (2018) Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Eng 154:416–429

    Article  Google Scholar 

  32. Johari A, Javadi AA, Habibagahi G (2011) Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Comput Geotech 38(1):2–13

    Article  Google Scholar 

  33. Kim J, Hwang W, Kim Y (2018) Effects of hysteresis on hydro-mechanical behavior of unsaturated soil. Eng Geol 245:1–9

    Article  Google Scholar 

  34. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint conference on artificial intelligence: Morgan Kaufmann Publishers Inc., 1995. p. 1137-1143

  35. Kohestani VR, Hassanlourad M (2016) Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines. Int J Geomech 16(1):04015038

    Article  Google Scholar 

  36. Kolymbas D. A generalized hypoelastic constitutive law. Proc XI Int Conf Soil Mechanics and Foundation Engineering. San Francisco: Balkema, Rotterdam, 1985. p. 2626.

  37. Koopialipoor M, Jahed Armaghani D, Haghighi M, Ghaleini EN (2017) A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. B Eng Geol Environ:1–10

  38. Lefik M, Schrefler B (2003) Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput Methods Appl Mech Eng 192(28–30):3265–3283

    Article  MATH  Google Scholar 

  39. Liu C, Jiang Z, Han X, Zhou W (2019) Slope displacement prediction using sequential intelligent computing algorithms. Measurement 134:634–648

    Article  Google Scholar 

  40. Liu K, Liu B (2019) Intelligent information-based construction in tunnel engineering based on the GA and CCGPR coupled algorithm. Tunnell Undergr Space Technol 88:113–128

    Article  Google Scholar 

  41. Liu WZ, Shi ML, Miao LC, Xu LR, Zhang DW (2013) Constitutive modeling of the destructuration and anisotropy of natural soft clay. Comput Geotech 51:24–41

    Article  Google Scholar 

  42. Mašín D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    Article  MATH  Google Scholar 

  43. Masters T (1994) Practical neural network recipes in C++. Academic Press

  44. Müthing N, Zhao C, Hölter R, Schanz T (2018) Settlement prediction for an embankment on soft clay. Comput Geotech 93:87–103

    Article  Google Scholar 

  45. Nassr A, Esmaeili-Falak M, Katebi H, Javadi A (2018) A new approach to modeling the behavior of frozen soils. Eng Geol 246:82–90

    Article  Google Scholar 

  46. Ng CWW, Akinniyi DB, Zhou C, Chiu CF (2019) Comparisons of weathered lateritic, granitic and volcanic soils: Compressibility and shear strength. Eng Geol 249:235–240

    Article  Google Scholar 

  47. Nielsen RH (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the IEEE first international conference on neural networks, San Diego, CA, USA, pp 11–13

  48. Paola JD (1994) Neural network classification of multispectral imagery. The University of Arizona

  49. Penumadu D, Zhao RD (1999) Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). Comput Geotech 24:207–230

    Article  Google Scholar 

  50. Prechelt L (1998) Automatic early stopping using cross validation quantifying the criteria. Neural Netw 11:761–767

    Article  Google Scholar 

  51. Rashidian V, Hassanlourad M (2014) Application of an artificial neural network for modeling the mechanical behavior of carbonate soils. Int J Geomech 14(1):142–150

    Article  Google Scholar 

  52. Romo MP, García SR, Mendoza MJ, Taboada-Urtuzuástegui V (2001) Recurrent and constructive-algorithm networks for sand behavior modeling. Int J Geomech 1(4):371–387

    Article  Google Scholar 

  53. Roscoe KH, Burland J. On the generalized stress-strain behaviour of wet clay. Engineering Plasticity. Cambridge, UK: Cambridge University Press, 1968. p. 535–609.

  54. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(9):533–536

    Article  MATH  Google Scholar 

  55. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc C-appl 36(2):111–147

    MathSciNet  MATH  Google Scholar 

  56. Su D, Yang ZX (2019) Drained analyses of cylindrical cavity expansion in sand incorporating a bounding-surface model with state-dependent dilatancy. Appl Math Model 68:1–20

    Article  MathSciNet  MATH  Google Scholar 

  57. Su L-J, Yin J-H, Zhou W-H (2010) Influences of overburden pressure and soil dilation on soil nail pull-out resistance. Comput Geotech 37(4):555–564

    Article  Google Scholar 

  58. Taiebat M, Dafalias YF (2008) SANISAND: Simple anisotropic sand plasticity model. Int J Numer Anal Met 32(8):915–948

    Article  MATH  Google Scholar 

  59. Tian Y, Yao YP (2017) Modelling the non-coaxiality of soils from the view of cross-anisotropy. Comput Geotech 86:219–229

    Article  Google Scholar 

  60. Tran C, Srokosz P (2010) The idea of PGA stream computations for soil slope stability evaluation. Cr Mecanique 338(9):499–509

    Article  MATH  Google Scholar 

  61. Turk G, Logar J, Majes B (2001) Modelling soil behaviour in uniaxial strain conditions by neural networks. Adv Eng Softw 32:805–812

    Article  MATH  Google Scholar 

  62. Vermeer P (1978) A double hardening model for sand. Geotechnique 28(4):413–433

    Article  Google Scholar 

  63. Wang C (1994) A theory of generalization in learning machines with neural application. The University of Pennsylvania

  64. Wang S, Wu W, Yin Z-Y, Peng C, He X-Z (2018) Modelling time-dependent behaviour of granular material with hypoplasticity. Int J Numer Anal Methods Geomech 42(12):1331–1345

    Article  Google Scholar 

  65. Wu W, Bauer E, Kolymbas D (1996) Hypoplastic constitutive model with critical state for granular materials. Mech Mater 23(1):45–69

    Article  Google Scholar 

  66. Xie X, Qi S, Zhao F, Wang D (2018) Creep behavior and the microstructural evolution of loess-like soil from Xi’an area, China. Eng Geol 236:43–59

    Article  Google Scholar 

  67. Xiong H, Nicot F, Yin Z (2017) A three-dimensional micromechanically based model. Int J Numer Anal Methods Geomech 41(17):1669–1686

    Article  Google Scholar 

  68. Yao Y, Hou W, Zhou A (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

    Article  Google Scholar 

  69. Yao Y, Sun D, Luo T (2004) A critical state model for sands dependent on stress and density. Int J Numer Anal Methods Geomech 28(4):323–337

    Article  MATH  Google Scholar 

  70. Yao Y, Sun D, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222

    Article  Google Scholar 

  71. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique 59(5):451–469

    Article  Google Scholar 

  72. Yin Z-Y, Chang CS, Karstunen M, Hicher P-Y (2010) An anisotropic elastic–viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    Article  MATH  Google Scholar 

  73. Yin Z-Y, Jin Y-F, Shen S-L, Huang H-W (2016) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model. Acta Geotech 12(4):849–867

    Article  Google Scholar 

  74. Yin Z-Y, Karstunen M (2011) Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mech Solida Sin 24(3):216–230

    Article  Google Scholar 

  75. Yin Z-Y, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng 137(11):1103–1113

    Article  Google Scholar 

  76. Yin Z-Y, Zhao J, Hicher P-Y (2014) A micromechanics-based model for sand-silt mixtures. Int J Solids Struct 51(6):1350–1363

    Article  Google Scholar 

  77. Yin ZY, Chang CS (2009) Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct 46(6):1373–1388

    Article  MATH  Google Scholar 

  78. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951

    Article  MATH  Google Scholar 

  79. Yin ZY, Chang CS, Hicher PY, Karstunen M (2009) Micromechanical analysis of kinematic hardening in natural clay. Int J Plast 25(8):1413–1435

    Article  MATH  Google Scholar 

  80. Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic-viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    Article  MATH  Google Scholar 

  81. Yin ZY, Jin YF, S SJ, Hicher PY (2017) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Met 42(1):1-25

  82. Yu H (1998) CASM: a unified state parameter model for clay and sand. Int J Numer Anal Methods Geomech 22(8):621–653

    Article  MATH  Google Scholar 

  83. Zhang P, Wu H-N, Chen R-P, Chan THT (2020) Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: a comparative study. Tunnell Undergr Space Technol 99:103383

    Article  Google Scholar 

  84. Zhang P, Yin Z-Y, Jin Y-F, Chan THT (2020) A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest. Eng Geol 265:105328

    Article  Google Scholar 

  85. Zhang P, Yin Z-Y, Zheng Y, Gao F-P (2020) A LSTM surrogate modelling approach for caisson foundations. Ocean Eng 204:107263

    Article  Google Scholar 

  86. Zhang P, Yin ZY, Jin YF (2021) State-of-the-art review of machine learning applications in constitutive modeling of soils. Arch Comput Method Eng. https://doi.org/10.1007/s11831-020-09524-z

    Article  MathSciNet  Google Scholar 

  87. Zhang P, Yin ZY, Jin YF, Chan T, Gao FP (2021) Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms. Geosci Front 12(1):441–452

    Article  Google Scholar 

  88. Zhang P, Yin ZY, Jin YF, Ye GL (2020) An AI-based model for describing cyclic characteristics of granular materials. Int J Numer Anal Met 44(9):1315–1335

    Article  Google Scholar 

  89. Zhou YF, Tham LG, Yan WM, Dai FC, Xu L (2014) Laboratory study on soil behavior in loess slope subjected to infiltration. Eng Geol 183:31–38

    Article  Google Scholar 

  90. Zhu JH, Zaman MM, Anderson SA (1998) Modelling of shearing behaviour of a residual soil with Recurrent Neural Network. Int J Numer Anal Met 22(8):671–687

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No.: 15209119, R5037-18F); Joint research project between SiChuan Province and National Universities funded by Science & Technology Department of Sichuan Province (No.2019YFSY0015), and Open research grant of MOE Key Laboratory of High-speed Railway Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Yu Yin or Yin-Fu Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Formulations of BPNN-based Kaolinite constitutive models

Appendix A. Formulations of BPNN-based Kaolinite constitutive models

$${\mathbf{H}} = f\left( {{\mathbf{WX}} + {\varvec\theta }} \right)$$
(1A)
$${\mathbf{O}} = g\left( {{\mathbf{VH}} + {\varvec\theta }_{{\text{o}}} } \right)$$
(2A)

where, X = [p, q, e, ε1, Δε1], matrix of input variables; H = matrix of the hidden layer output; O = [q, e], matrix of output variables; f = tansig formulation; g = purlin formulation. Herein,

$${\mathbf{W}} = \left[ \begin{gathered} - 1.35315 \, 1.907756 \, 0.915302 \, - 2.02378 \, - 2.16087 \hfill \\ 2.595596 \, - 0.32869 \, - 2.48042 \, 2.352501 \, - 2.32131 \hfill \\ - 1.36652 \, 0.169634 \, 3.622397 \, - 2.44086 \, - 3.21463 \hfill \\ - 0.72626 \, - 0.01880 \, - 0.22374 \, 0.908566 \, 1.41438 \hfill \\ - 0.02852 \, 0.013743 \, 0.634650 \, - 0.57525 \, - 0.11921 \hfill \\ - 0.13418 \, 0.036866 \, 0.933846 \, - 1.36281 \, - 1.07577 \hfill \\ - 0.19825 \, - 0.51040 \, - 6.04189 \, - 2.26296 \, - 1.74243 \hfill \\ - 0.19073 \, 0.055012 \, 1.177738 \, - 0.69086 \, - 2.03872 \hfill \\ \end{gathered} \right]$$
$${\varvec\theta } = \left[ {2.077058; \, 0.827601; \, 0.480095; \, - 0.95727; \, - 0.88088; \, - 1.21919; \, 0.862033; \, - 2.24696} \right]$$
$${\mathbf{V}} = \left[ \begin{gathered} - 0.1350 \, - 0.04501 \, - 2.23939 \, - 1.11558 \, 1.894278 \, - 1.86286 \, - 2.12292 \, 1.08516 \hfill \\ 0.065208 \, - 0.02499 \, - 0.12495{ 0}{\text{.603675 0}}{.853076 } - 0.0923 \, - 0.06472 \, - 0.63716 \hfill \\ \end{gathered} \right]$$
$${\varvec\theta }_{{\text{o}}} = \left[ {0.31; \, 0.113215} \right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Yin, ZY., Jin, YF. et al. Modelling the mechanical behaviour of soils using machine learning algorithms with explicit formulations. Acta Geotech. 17, 1403–1422 (2022). https://doi.org/10.1007/s11440-021-01170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01170-4

Keywords

Navigation