Skip to main content
Log in

Crystal Structure and Hirshfeld Surface Analysis of Bis(3-thienoyl) Disulfide

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The spectroscopic characterization (1H, 13C{1H} NMR, UV–Vis) and single-crystal X-ray diffraction (scXRD) analysis accomplished by inspection of the Hirshfeld surface of bis(3-thienoyl) disulfide (1) is described. The title compound 1 crystallizes in the monoclinic space group P21/n. The unit cell parameters are a = 7.9959(3) Å, b = 6.4348(3) Å, c = 22.4924(9) Å, β = 100.108(4)°, V = 1139.32(8) Å3, Z = 4, Rgt(F) = 0.0278, wRref(F2) = 0.0667. The packing of 1 is dominated by S⋯O and S⋯S interactions, giving a 2D layer structure parallel to (101). The X‐ray crystal structure analysis revealed the packing of 1 is dominated by S⋯O and S⋯S interactions, giving a 2D layer structure parallel to (101). The intermolecular interactions in 1 were analyzed using the Hirshfeld surface method including 2D fingerprint plots and enrichment ratios (E), which shows that the most favored intermolecular contacts are the O⋯H and C⋯S indicated by E values above 1.30. The interaction energies between molecular pairs revealed the importance of the weak O⋯H and C⋯S interactions in stabilizing the molecular structure of 1.

Graphic Abstract

Single crystal X-ray structure analysis, DFT calculations and Hirshfeld surface analysis to identify intermolecular interactions within the solid state structure of bis(3-thienoyl) disulfide (1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagi N, Kaizer J, Speier G (2015) Oxidation of thiols to disulfides by dioxygen catalyzed by a bioinspired organocatalyst. RSC Adv 5:45983–45986

    CAS  Google Scholar 

  2. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Regino CAS, Richardson DE (2007) Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorg Chim Acta 360:3971–3977

    CAS  Google Scholar 

  4. Sanz R, Aguado R, Pedrosa MR, Arnáiz FJ (2002) Simple and selective oxidation of thiols to disulfides with dimethylsulfoxide catalyzed by dichlorodioxomolybdenum(VI). Synthesis (Stuttg) 7:856–858

    Google Scholar 

  5. Silveira CC, Mendes SR (2007) Catalytic oxidation of thiols to disulfides using iodine and CeCl3·7H2O in graphite. Tetrahedron Lett 48:7469–7471

    CAS  Google Scholar 

  6. Hekmatshoar R, Sajadi S, Heravi MM, Bamoharram FF (2007) H14[NaP5W30O110] as a heterogeneous recyclable catalyst for the air oxidation of thiols under solvent free conditions. Molecules 12:2223–2228

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Supale A, Gokavi G (2008) Oxidation of thiols to disulfides using H2O2 catalyzed by recyclable chromic potassium sulphate at room temperature. React Kinet Catal Lett 93:141–148

    CAS  Google Scholar 

  8. Leite SLS, Pardini VL, Viertler H (1990) Synthetic communications: an international journal for rapid communication of synthetic organic chemistry. Synth Commun 20:393–397

    CAS  Google Scholar 

  9. Salimi A, Hallaj R (2005) Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta 66:967–975

    CAS  PubMed  Google Scholar 

  10. Sridhar M, Kumara Vadivel S, Bhalerao UT (1998) Novel method for preparation of symmetric disulfides from thiols using enzyme catalysis. Synth Commun 28:1499–1502

    CAS  Google Scholar 

  11. Khalyfeh KAL, Taher D, Helal W et al (2020) Synthesis and characterization of 1,4-chalcogenesters bearing 5-membered heterocycles. J Chem Sci 132(117):1–16

    Google Scholar 

  12. Patai S, Rappoport Z (2006) The chemistry of peroxides, 1st edn. Wiley, New York

    Google Scholar 

  13. Niyomura O, Kato S, Inagaki S (2000) An unusual planar diacyl ditelluride (2-MeOC6H4COTe)2: the origin of its planarity. J Am Chem Soc 122:2132–2133

    CAS  Google Scholar 

  14. Niyomura O, Tani K, Kato S (1999) A facile synthesis of potassium selenocarboxylates and their oxidation with XeF2 to diacyl diselenides. Heteroat Chem 10:373–379

    CAS  Google Scholar 

  15. Chou JH, Rauchfuss TB, Szczepura LF (1998) Studies on the electroactive heterocycles C6S8(0/2-) and C6S6O2(0/2-) and related metal complexes. J Am Chem Soc 120:1805–1811

    CAS  Google Scholar 

  16. Rout GC, Seshasayee M, Subrahmanyan T, Aravamudan G (1983) Structure of dibenzoyldisulphane, C14H10O2S2. Acta Crystallogr C 39:1387–1389

    Google Scholar 

  17. Paul C, Srikrishnan T (2004) Crystal and molecular structure of dibenzoyl disulfide. J Chem Crystallogr 34:211–217

    CAS  Google Scholar 

  18. Singh S, Chaturvedi J, Bhattacharya S, Nöth H (2011) Silver(I) catalyzed oxidation of thiocarboxylic acids into the corresponding disulfides and synthesis of some new Ag(I) complexes of thiophene-2-thiocarboxylate. Polyhedron 30:93–97

    CAS  Google Scholar 

  19. Vandavasi JK, Hu WP, Chen CY, Wang JJ (2011) Efficient synthesis of unsymmetrical disulfides. Tetrahedron 67:8895–8901

    CAS  Google Scholar 

  20. Wang D, Wu SY, Li HP, Yang Y, Roesky HW (2017) Synthesis and characterization of copper complexes with the N-(2,6-diisopropylphenyl)-N′-acylthiourea ligands. Eur J Inorg Chem 2017:1406–1413

    CAS  Google Scholar 

  21. Niyomura O, Kitoh Y, Nagayama K-I, Kato S (1999) Di (acyl) and di (thioacyl) disulfides: a facile synthesis and structural analysis. Sulfur Lett 22:195–207

    CAS  Google Scholar 

  22. Bereman RD, Baird DM, Bordner J, Dorfman JR (1983) Resonance induced properties in monothiocarbamates derived from aromatic amines: comparison of the coordination chemistry of indole and indoline monothiocarbamates. Ployhedron 2:25–30

    CAS  Google Scholar 

  23. Beyer L, Richter R, Seidelmann O (1999) Ferrocensubstituierte 1,3-bidentate Liganden und ihre heteronuklearen Übergangsmetallchelate. J für Prakt Chemie 341:704–726

    CAS  Google Scholar 

  24. Imrie C, Cook L, Levendis DC (2001) An investigation of the chemistry of ferrocenoyl derivatives. The synthesis and reactions of ferrocenoyl imidazolide and its derivatives. J Organomet Chem 637–639:266–275

    Google Scholar 

  25. Wang Q, Shu Y, Hou X (2011) (Furan-2-yl)[(furan-2-yl)carbonyldisulfanyl]methanone. Acta Crystallogr. https://doi.org/10.1107/S160053681104356X

    Article  Google Scholar 

  26. Mukhlall JA, Noll BC, Hersh WH (2011) Synthesis of chiral disulfides: potential reagents for enantioselective sulfurization. J Sulfur Chem 32:199–212

    CAS  Google Scholar 

  27. Erben MF, Della Védova CO, Willner H, Trautner F, Oberhammer H, Boese R (2005) Fluoroformyl trifluoroacetyl disulfide, FC(O)SSC(O)CF 3: synthesis, structure in solid and gaseous states, and conformational properties. Inorg Chem 44:7070–7077

    CAS  PubMed  Google Scholar 

  28. Erben MF, Della Védova CO, Willner H, Boese R (2006) Synthesis, structure and conformational properties of fluoroformylchlorodifluoroacetyl disulfide, FC(O)SSC(O)CF2Cl: conformational transferability in -C(O)SSC(O)- compounds. Eur J Inorg Chem 2006:4418–4425

    Google Scholar 

  29. Li F, Yin H-D, Hong M, Zhai J, Wang D-Q (2006) Bis(N,N-dicyclohexylthiocarbamoyl) disulfide. Acta Crystallogr Sect E E62:1417–1418

    Google Scholar 

  30. Zysman-Colman E, Harpp DN (2004) Comparison of the structural properties of compounds containing the XSSX moiety (X = H, Me, R, Cl, Br, F, OR). J Sulfur Chem 25:291–316

    CAS  Google Scholar 

  31. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29:2176–2179

    CAS  Google Scholar 

  32. Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr Sect A A46:467–473

    CAS  Google Scholar 

  33. Zhu Y, Wolf MO (2000) Charge transfer and delocalization in conjugated (ferrocenylethynyl)oligothiophene complexes. J Am Chem Soc 122:10121–10125

    CAS  Google Scholar 

  34. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A A64:112–122

    Google Scholar 

  35. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854

    CAS  Google Scholar 

  36. Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78

    CAS  Google Scholar 

  37. Neese F (2017) Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci e1327:1–6

    Google Scholar 

  38. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys. https://doi.org/10.1063/1.2148954

    Article  PubMed  Google Scholar 

  39. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  PubMed  Google Scholar 

  40. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent mode. J Phys Chem A 102:1995–2001

    CAS  Google Scholar 

  41. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    CAS  Google Scholar 

  42. Allouche A (2011) Software news and updates Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182

    CAS  PubMed  Google Scholar 

  43. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. University of Western Australia

  44. Pauling L (1960) The nature of the chemical bond by Linus Pauling, 3rd edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  45. Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97:270–274

    CAS  Google Scholar 

  46. Mayer I (1984) Bond order and valence: relations to Mulliken’s population analysis. Int J Quantum Chem 26:151–154

    CAS  Google Scholar 

  47. Mayer I (1985) Bond orders and valences in the SCF theory: a comment. Theor Chim Acta 67:315–322

    CAS  Google Scholar 

  48. Van Wart HE, Shipman LL, Scheraga HA (1975) Theoretical and experimental evidence for a nonbonded 1,4 carbon-sulfur interaction in organosulfur compounds. J Phys Chem 79:1436–1447

    Google Scholar 

  49. Poppitz EA, Hildebrandt A, Korb M, Schaarschmidt D, Lang H (2014) Synthesis, properties, and electron transfer studies of ferrocenyl thiophenes. Zeitschrift fur Anorg und Allg Chemie 640:2809–2816

    CAS  Google Scholar 

  50. Poppitz EA, Korb M, Lang H (2014) Crystal structure of 3-{1’-[3,5-bis(trifluoromethyl)phenyl]ferrocenyl}-4-bromothiophene. Acta Crystallogr E70:238–241

    Google Scholar 

  51. Taher D, Awwadi FF, Speck JM et al (2017) Heterocyclic-based ferrocenyl carboselenolates: synthesis, solid-state structure and electrochemical investigations. J Organomet Chem 845:55–62

    CAS  Google Scholar 

  52. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals Radii. J Phys Chem 100:7384–7391

    CAS  Google Scholar 

  53. Alvarez S (2013) A cartography of the van der Waals territories. Dalton Trans 42:8617–8636

    CAS  PubMed  Google Scholar 

  54. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta (Berl) 44:129–138

    CAS  Google Scholar 

  55. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr B 60:627–668

    PubMed  Google Scholar 

  56. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392

    CAS  Google Scholar 

  57. Liu X, Du L, Zhang W, Li R, Feng F, Feng X (2019) Syntheses, structures and Hirshfeld surface analyses of two 3D supramolecules based on nitrogen-heterocyclic tricarboxylate ligand. J Mol Struct 1194:138–143

    CAS  Google Scholar 

  58. Jelsch C, Ejsmont K, Huder L (2014) The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 1:119

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Tan SL, Jotani MM, Tiekink ERT (2019) Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr E 75:308

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for a visiting fellowship of Al Khalyfeh, Kahled.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled Al Khalyfeh or Deeb Taher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Khalyfeh, K., Taher, D., Helal, W. et al. Crystal Structure and Hirshfeld Surface Analysis of Bis(3-thienoyl) Disulfide. J Chem Crystallogr 52, 113–121 (2022). https://doi.org/10.1007/s10870-021-00896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00896-z

Keywords

Navigation