Skip to main content
Log in

On Using Artificial Viscosity in Edge-Based Schemes on Unstructured Grids

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

When solving multidimensional problems of gas dynamics, finite-volume schemes using complete (i.e., based on a three-wave configuration) solvers of the Riemann problem suffer from shock-wave instability. It can appear as oscillations that cannot be damped by slope limiters, or it can lead to a qualitatively incorrect solution (carbuncle effect). To combat instability, one can switch to incomplete solvers based on a two-wave configuration near the shock wave, or introduce artificial viscosity. The article compares these two approaches on unstructured grids in relation to the EBR-WENO scheme for approximating convective terms and the classical Galerkin method for approximating diffusion terms. It is shown that the method of introducing artificial viscosity usually makes it possible to more accurately reproduce the flow pattern behind the shock front. However, on a three-dimensional unstructured grid, it causes dips ahead of the front, the depth of which depends on the quality of the grid, which can lead to an emergency stop of the calculation. Switching to an incomplete solver in this case gives satisfactory results with a much lower sensitivity to the quality of the mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics,” J. Comput. Phys. 230 (7), 2384–2390 (2011).

    Article  MathSciNet  Google Scholar 

  2. A. V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows,” USSR Comp. Math. Math. Phys. 27 (2), 175–180 (1987).

    Article  Google Scholar 

  3. B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32 (1), 101–136 (1979).

    Article  Google Scholar 

  4. A. Harten and S. Osher, “Uniformly high-order accurate essentially nonoscillatory scheme. I,” SIAM J. Numer. Anal. 24 (2), 279–309 (1987).

    Article  MathSciNet  Google Scholar 

  5. A. Harten, “ENO schemes with subcell resolution,” J. Comput. Phys. 83 (1), 148–184 (1989).

    Article  MathSciNet  Google Scholar 

  6. X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” J. Comput. Phys. 115 (1), 200–212 (1994).

    Article  MathSciNet  Google Scholar 

  7. G.-S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126 (1), 202–228 (1996).

    Article  MathSciNet  Google Scholar 

  8. C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,” ICASE Report No. 97-65 (NASA Langley Research Center, Hampton, VA, 1997); in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lecture Notes in Mathematics (Springer, Berlin, 1998), Vol. 1697, pp. 325–432.

  9. R. Zhang, M. Zhang, and C.-W. Shu, “On the order of accuracy and numerical performance of two classes of finite volume WENO schemes,” Commun. Comput. Phys. 9 (3), 807-827 (2011).

    Article  MathSciNet  Google Scholar 

  10. L. Fu, X. Y. Hu, and N. A. Adams, “A family of high-order targeted ENO schemes for compressible-fluid simulations,” J. Comput. Phys. 305, 333–359 (2016).

    Article  MathSciNet  Google Scholar 

  11. L. Fu, X. Y. Hu, and N. A. Adams, “Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws,” J. Comput. Phys. 349, 97–121 (2017).

    Article  MathSciNet  Google Scholar 

  12. T. J. Barth and D. C. Jespersen, “The design and application of upwind schemes on unstructured meshes,” in 27th Aerospace Science Meeting (Reno, NV, January 9–12, 1989), AIAA Paper 89-366 (1989).

  13. L. Fezoui and B. Stouffet, “A class of implicit schemes for Euler simulations with unstructured meshes,” J. Comput. Phys. 84 (1), 174–206 (1989).

    Article  MathSciNet  Google Scholar 

  14. H. Luo, J. D. Baumt, and R. Lohner, “Edge-based finite element scheme for the Euler equations,” AIAA J. 32 (6), 1183-1190 (1994).

    Article  Google Scholar 

  15. H. Jasak, H. G. Weller, and A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes,” Int. J. Numer. Methods Fluids 31 (2), 431–449 (1999).

    Article  Google Scholar 

  16. C. Le Touze, A. Murrone, and H. Guillard, “Multislope MUSCL method for general unstructured meshes,” J. Comput. Phys. 284, 389–418 (2015).

    Article  MathSciNet  Google Scholar 

  17. W. R. Wolf and J. L. F. Azevedo, “High-order ENO and WENO schemes for unstructured grids,” Int. J. Numer. Methods Fluids 55 (10), 917–943 (2007).

    Article  MathSciNet  Google Scholar 

  18. M. Dumbser, M. Käser, V. A. Titarev, and E. F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems,” J. Comput. Phys. 226 (1), 204–243 (2007).

    Article  MathSciNet  Google Scholar 

  19. P. Tsoutsanis, V. A. Titarev, and D. Drikakis, “WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions,” J. Comput. Phys. 230 (4), 1585–1601 (2011).

    Article  MathSciNet  Google Scholar 

  20. Y. Liu and Y.-T. Zhang, “A robust reconstruction for unstructured WENO schemes,” J. Sci. Comput. 54 (2–3), 603–621 (2013).

    Article  MathSciNet  Google Scholar 

  21. P. Tsoutsanis, A. F. Antoniadis, and D. Drikakis, “WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows,” J. Comput. Phys. 256, 254–276 (2014).

    Article  MathSciNet  Google Scholar 

  22. P. A. Bakhvalov and T. K. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes,” KIAM Preprint No. 23 (Keldysh Inst. Appl. Math., Moscow, 2017) [in Russian].

    MATH  Google Scholar 

  23. P. Bakhvalov and T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes,” Comput. Fluids 157, 312–324 (2017).

    Article  MathSciNet  Google Scholar 

  24. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 1997).

    Book  Google Scholar 

  25. J. J. Quirk, “A contribution to the great Riemann solver debate,” Int. J. Numer. Methods Fluids 18 (6), 555–574 (1994).

    Article  MathSciNet  Google Scholar 

  26. I. Yu. Tagirova and A. V. Rodionov, “Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes,” Math. Models Comput. Simul. 8 (3), 249–262 (2016).

    Article  MathSciNet  Google Scholar 

  27. A. V. Rodionov, “Artificial viscosity to cure the shock instability in high-order Godunov-type schemes,” Comput. Fluids 190, 77–97 (2019).

    Article  MathSciNet  Google Scholar 

  28. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43 (2), 357–372 (1981).

    Article  MathSciNet  Google Scholar 

  29. V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles,” USSR Comput. Math. Math. Phys. 1 (2), 304–320 (1962).

    Article  Google Scholar 

  30. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002).

    Book  Google Scholar 

  31. H. Nishikawa, “Beyond interface gradient: A general principle for constructing diffusion schemes,” in 40th Fluid Dynamics Conference and Exhibit (Chicago, IL, June 28 – July 1, 2010), AIAA Paper No. 2010-5093 (2010).

  32. K. Lipnikov, M. Shashkov, D. Svyatskiy, and Yu. Vassilevski, “Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes,” J. Comput. Phys. 227 (1), 492–512 (2007).

    Article  MathSciNet  Google Scholar 

  33. K. Lipnikov, D. Svyatskiy, and Yu. Vassilevski, “Minimal stencil finite volume scheme with the discrete maximum principle,” Russ. J. Numer. Anal. Math. Modell. 27 (4), 369–385 (2012).

    Article  MathSciNet  Google Scholar 

  34. U. S. Vevek, B. Zang, and T. H. New, “On alternative setups of the double Mach reflection problem,” J. Sci. Comput. 78 (2), 1291–1303 (2019).

    Article  MathSciNet  Google Scholar 

  35. P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” J. Comput. Phys. 54 (1), 115–173 (1984).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project 20-41-09018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Bakhvalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhvalov, P.A., Kozubskaya, T.K. On Using Artificial Viscosity in Edge-Based Schemes on Unstructured Grids. Math Models Comput Simul 13, 705–715 (2021). https://doi.org/10.1134/S2070048221040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221040050

Keywords:

Navigation