Skip to main content
Log in

Entropy Stability of Bicompact Schemes in Gas Dynamics Problems

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Fully discrete bicompact schemes of the fourth order of approximation in space are investigated for entropy stability in problems of gas dynamics. Expressions for the rate of entropy production in these schemes are derived. Qualitative estimates are obtained for the behavior of this quantity. On the example of one-dimensional Riemann test problems, a numerical analysis of the entropy production rate for bicompact schemes of the first and third orders of approximation in time is carried out. From the results of this analysis, it is concluded whether any entropy correction is necessary for bicompact schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. I. Sedov, Mechanics of Continuous Media, Vols. 1, 2 (Lan’, St. Petersburg, 2004; World Scientific, River Edge, NJ, 1997).

  2. E. Tadmor, “Entropy stable schemes,” Handb. Numer. Anal. 17, Chapter 18, 467–493 (2016).

  3. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed. (Springer, Berlin, 2009).

    Book  Google Scholar 

  4. M. V. Abakumov, S. I. Mukhin, Yu. P. Popov, and D. V. Rogozhkin, “Expansion shock waves in numerical solutions of gasdynamics problems,” Math. Models Comput. Simul. 1 (1), 21–30 (2009).

    Article  MathSciNet  Google Scholar 

  5. M. D. Bragin, Yu. A. Kriksin, and V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations,” KIAM Preprint No. 18 (Keldysh Inst. Appl. Math., Moscow, 2019) [in Russian]. URL: http://library.keldysh.ru/preprint.asp?id=2019-18.

  6. S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. (N.S.) 47 (89) (3), 271–306 (1959).

  7. S. K. Godunov and I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee,” Comput. Math. Math. Phys. 54 (6), 1012–1024 (2014).

    Article  MathSciNet  Google Scholar 

  8. E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems,” Acta Numerica 12, 451–512 (2003).

    Article  MathSciNet  Google Scholar 

  9. F. Ismail and P. L. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks,” J. Comput. Phys. 228 (15), 5410–5436 (2009).

    Article  MathSciNet  Google Scholar 

  10. P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier‑Stokes equations,” Commun. Comput. Phys. 14 (5), 1252–1286 (2013).

    Article  MathSciNet  Google Scholar 

  11. U. S. Fjordholm, S. Mishra, and E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws,” SIAM J. Numer. Anal. 50 (2), 544–573 (2011).

    Article  MathSciNet  Google Scholar 

  12. T. C. Fisher and M. H. Carpenter, “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains,” J. Comput. Phys. 252, 518–557 (2013).

    Article  MathSciNet  Google Scholar 

  13. B. Biswas and R. K. Dubey, “Low dissipative entropy stable schemes using third order WENO and TVD reconstructions,” Adv. Comput. Math. 44 (4), 1153–1181 (2018).

    Article  MathSciNet  Google Scholar 

  14. J.-L. Guermond, R. Pasquetti, and B. Popov, “Entropy viscosity method for nonlinear conservation laws,” J. Comput. Phys. 230 (11), 4248–4267 (2011).

    Article  MathSciNet  Google Scholar 

  15. T. Chen and C.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws,” J. Comput. Phys. 345, 427–461 (2017).

    Article  MathSciNet  Google Scholar 

  16. M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52 (4), 578–600 (2012).

    Article  MathSciNet  Google Scholar 

  17. A. V. Chikitkin, B. V. Rogov, and S. V. Utyuzhnikov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations,” Appl. Numer. Math. 93, 150–163 (2015).

    Article  MathSciNet  Google Scholar 

  18. M. D. Bragin and B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations,” Comput. Math. Math. Phys. 56 (6), 947–961 (2016).

    Article  MathSciNet  Google Scholar 

  19. M. D. Bragin and B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations,” Appl. Numer. Math. 151, 229–245 (2020).

    Article  MathSciNet  Google Scholar 

  20. M. D. Bragin and B. V. Rogov, “High‑order bicompact schemes for numerical mo-deling of multispecies multi‑reaction gas flows,” Math. Models Comput. Simul. 13 (1), 106–115 (2021).

    Article  Google Scholar 

  21. B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations,” Appl. Numer. Math. 139, 136–155 (2019).

    Article  MathSciNet  Google Scholar 

  22. R. Alexander, “Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s,” SIAM J. Numer. Anal. 14 (6), 1006–1021 (1977).

    Article  MathSciNet  Google Scholar 

  23. E. Tadmor, “The numerical viscosity of entropy stable schemes for systems of conservation laws. I,” Math. Comput. 49 (179), 91–103 (1987).

    Article  MathSciNet  Google Scholar 

  24. Yu. I. Shokin and N. N. Yanenko, The Method of Differential Approximation. Applications to Gas Dynamics (Nauka, Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  25. R. Liska and B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations,” SIAM J. Sci. Comput. 25 (3), 995–1017 (2003).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study is supported by a grant from the Russian Science Foundation (project no. 17-71-30 014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Bragin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D. Entropy Stability of Bicompact Schemes in Gas Dynamics Problems. Math Models Comput Simul 13, 613–622 (2021). https://doi.org/10.1134/S2070048221040086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221040086

Keywords:

Navigation