Skip to main content
Log in

Models of the General Circulation of the Earth’s Atmosphere: Achievements and Directions of Development

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This paper presents an analysis of the level of description of the main physical processes in the Earth’s atmosphere in modern models of the general circulation of the Earth’s atmosphere and gives a brief overview of the modern models used by the main forecasting centers. The promising directions of the development of models of the general circulation of the Earth’s atmosphere are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S. Monin, Theoretical Foundations of Geophysical Hydrodynamics (Leningrad, Gidrometeoizdat, 1988) [in Russian]; English translation: Theoretical Geophysical Fluid Dynamics (Springer, Dordrecht, 1990).

  2. M. A. Tolstykh, R. A. Ibraev, E. M. Volodin, K. V. Ushakov, V. V. Kalmykov, A.V. Shlyaeva, V. G. Mizyak, and R. N. Habeev, Models of the Global Atmosphere and the World Ocean: Algorithms and Supercomputer Technologies (Izd. Mosk. Gos. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  3. H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Rípodas, L. Kornblueh, and J. Förstner, “The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids–Part 1: Formulation and performance of the baseline version,” Geosci. Model Dev. 6 (3), p.735–763 (2013).

    Article  Google Scholar 

  4. G. Zängl, D. Reinert, P. Rípodas, and M. Baldauf, “The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core,” Q. J. R. Meteorol. Soc. 141 (687), 563–579 (2015).

    Article  Google Scholar 

  5. J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, and S. Mickelson, “Computational performance of ultra-high-resolution capability in the community earth system model,” Int. J. High Perform. Comput. Appl. 26 (1), 5–16 (2012).

    Article  Google Scholar 

  6. Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical Note NCAR/TN-486+STR (National Center for Atmospheric Research, Boulder, CO, 2010). http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/description/cam5_desc.pdf.

  7. L. J. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Y. Ming, M. Zhao, J.-C. Golaz, P. Ginoux, S.-J. Lin, M. D. Schwarzkopf et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3,” J. Clim. 24 (13), 3484–3519 (2011).

    Article  Google Scholar 

  8. A. Qaddouri and V. Lee, “The Canadian Global Environmental Multiscale model on the Yin-Yang grid system,” Q. J. R. Meteorol. Soc. 137 (660), 1913–1926 (2011).

    Article  Google Scholar 

  9. Next Generation Global Prediction System (NGGPS). http://www.nws.noaa.gov/ost/nggps.

  10. A. Gassmann, “A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency,” Q. J. R. Meteorol. Soc. 139 (670), 152–175 (2013).

    Article  Google Scholar 

  11. D. Salmond and M. Hamrud, “IFS scalability and computational efficiency,” in 14th ECMWF Workshop on the Use of High Performance Computing in Meteorology (Reading, UK, 1–5 November 2010). https://www.ecmwf.int/sites/default/files/elibrary/2010/15058-ifs-scalability-and-computational-efficiency.pdf.

  12. W. C. Skamarock, Global Atmospheric Solvers for Next-Generation Weather and Climate Models. http://www2.mmm.ucar.edu/projects/global_cores/global_core.html.

  13. M. L. Yu, F. X. Giraldo, M. Peng, and Z. J. Wang, “Localized artificial viscosity stabilization of discontinuous Galerkin methods for nonhydrostatic mesoscale atmospheric modeling,” Mon. Weather Rev. 143 (12), 4823–4845 (2015).

    Article  Google Scholar 

  14. J. Thuburn and C. J. Cotter, “A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes,” J. Comput. Phys. 290, 274–297 (2015).

    Article  MathSciNet  Google Scholar 

  15. M. Taylor, J. Tribbia, and M. Iskandarani, “The spectral element method for the shallow water equations on the sphere,” J. Comput. Phys. 130 (1), 92–108 (1997).

    Article  Google Scholar 

  16. R. D. Nair, H.-W. Choi, and H. M. Tufo, “Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core,” Comput. Fluids 38 (2), 309–319 (2009).

    Article  MathSciNet  Google Scholar 

  17. J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, and S. Mickelson, “Computational performance of ultra-high-resolution capability in the community earth system model,” Int. J. High Perform. Comput. Appl. 26 (1), 5–16 (2012).

    Article  Google Scholar 

  18. I. Bašták Ďurán, J.-F. Geleyn, and F.A. Váňa, “A compact model for the stability dependency of TKE production–destruction–conversion terms valid for the whole range of Richardson numbers,” J. Atmos. Sci. 71 (8), 3004–3026 (2014).

    Article  Google Scholar 

  19. P. M. M. Soares, P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, “An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection,” Q. J. R. Meteorol. Soc. 130 (604), 3365–3384 (2004).

    Article  Google Scholar 

  20. A. Staniforth and J. Côté, “Semi-Lagrangian integration schemes for atmospheric models — A review,” Mon. Weather Rev. 119 (9), 2206–2223 (1991).

    Article  Google Scholar 

  21. B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov et al., “Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth,” Math. Models Comput. Simul. 10 (2), 176–185 (2018).

    Article  MathSciNet  Google Scholar 

  22. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Fundamentals of Atmospheric Optics (Nauka, St. Petersburg, 2003; Cambridge International Science, Cambridge, 2008).

  23. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM: Lab. Znanii, Moscow, 2006) [in Russian].

  24. B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms,” Atmos. Ocean. Opt. 16 (3), 244–246 (2003).

    Google Scholar 

  25. B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109 (D2), D02110 (2004).

    Google Scholar 

  26. B. A. Fomin and M. de Paula Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res. 110 (D2), D02106 (2005).

    Google Scholar 

  27. E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res. 102 (D14), 16663–16682 (1997).

    Article  Google Scholar 

  28. M. J. Iacono, E. J. Mlawer, and S. A. Clough, “Validation of the RRTM shortwave radiation model and comparison to GCM shortwave models,” in Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Proceedings (Atlanta, GA, March 19–23, 2001). https://armweb0-stg.ornl.gov/publications/proceedings/conf11/extended_abs/iacono_mj.pdf.

  29. M. J. Iacono, J. S. Delamere, E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, “Cloudy sky RRTM shortwave radiative transfer and comparison to the revised ECMWF shortwave model,” in Twelfth ARM Science Team Meeting Proceedings (St. Petersburg, FL, April 8–12, 2002). https://www.arm.gov/publications/proceedings/conf12/extended_abs/iacono-mj.pdf.

  30. S. Cusack, J. M. Edwards, and J. M. Crowther, “Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model,” J. Geophys. Res. 104 (D2), 2051–2057 (1999).

    Article  Google Scholar 

  31. T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model,” Appl. Opt. 39 (27), 4869–4878 (2000).

    Article  Google Scholar 

  32. R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. 67 (6), 2086–2100 (2010).

    Article  Google Scholar 

  33. A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8 (2), 93–107 (2016).

    Article  MathSciNet  Google Scholar 

  34. M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the multiscale version of the SL-AV global atmosphere model,” Russ. Meteorol. Hydrol. 40 (6), 374– 382 (2015).

    Article  Google Scholar 

  35. M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, S. V. Travova (Makhnorylova), G. S. Goyman, V. G. Mizyak, V. S. Rogutov, A. V. Shlyaeva, and A. Yu. Yurova, “Development of SL-AV global semi-Lagrangian atmosphere model in 2009–2019,” Gidrometeorol. Issled. Prognozy (Hydrometeorol. Res. Forecast.), No. 4 (374), 77–91 (2019).

  36. I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth’s lower and middle atmosphere,” Atmos. Ocean. Opt. 31 (6), 582–589 (2018).

    Article  Google Scholar 

  37. B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov et al., “Calculating the natural atmospheric radiation using the general circulation model of the Earth’s lower and middle atmosphere,” Math. Models Comput. Simul. 12 (5), 803–815 (2020).

    Article  MathSciNet  Google Scholar 

  38. N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55 (10), 1713–1726 (2015). https://doi.org/10.1134/S0965542515100103

    Article  MathSciNet  MATH  Google Scholar 

  39. N. A. Fuchs, The Mechanics of Aerosols (Izd. Akad. Nauk SSSR, Moscow, 1955; Macmillan, New York, 1964).

  40. P. C. Reist, Introduction to Aerosol Science (Macmillan, New York, 1984; Mir, Moscow, 1987).

  41. V. N. Piskunov, The Aerosol Dynamics (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  42. A. E. Aloyan, Modeling the Dynamics and Kinetics of Gaseous Admixtures and Aerosols in the Atmosphere (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  43. L. Gerard, J.-M. Piriou, R. Brožkova, J.-F. Geleyn, and D. Banciu, “Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model,” Mon. Weather Rev. 137 (11), 3960–3977 (2009).

    Article  Google Scholar 

  44. V. Khvorostyanov and K. Sassen, “Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties,” J. Atmos. Sci. 55 (10), 1822–1845 (1998).

    Article  Google Scholar 

  45. Ph. Lopez, “Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes,” Q. J. R. Meteorol. Soc. 128 (579), 229–257 (2002).

    Article  Google Scholar 

  46. M. Hortal, “Aspects of the numerics of the ECMWF model,” in Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling (Reading, UK, 7–11 September 1998), pp. 127–143. https://www.ecmwf.int/node/10015.

  47. P. Courtier, C. Freydier, J.-F. Geleyn, F. Rabier, and M. Rochas, “The Arpege project at Météo-France,” in Proc. ECMWF Seminar on Numerical Methods in Atmospheric Models, (Reading, UK, 9–13 September 1991), Vol. 2, pp. 193–231. https://www.ecmwf.int/node/8798.

  48. A. Staniforth, T. Melvin, and N. Wood, “GungHo! A new dynamical core for the Unified Model,” in Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling (Reading, UK, 2–5 September 2013), pp. 15–30. https://www.ecmwf.int/node/12389.

  49. I. A. Rozinkina, E. D. Astakhova, V. I. Tsvetkov, Yu. V. Alferov, T. Ya. Ponomareva, A. E. Nikitin, D. V. Vaskova, V. V. Kopeykin, and E. V. Churiulin, “Development of deterministic and ensemble numerical weather prediction systems based on the global spectral atmospheric model of the Hydrometcentre of Russia in 2009–2019,” Gidrometeorol. Issled. Prognozy (Hydrometeorol. Res. Forecast.), No. 4 (374), 54–76 (2019).

  50. Core Documentation of the COSMO-Model, Parts I-VII. http://www.cosmo-model.org/content/model/documentation/core/default.htm.

  51. WRF-ARW developed in NCAR: A Description of the Advanced Research WRF Version 3 (2008): WRF Model Users’ Page. http://www.mmm.ucar.edu/wrf/users.

  52. M. B. Ek, K. E. Mitchell, Y. Lin et al., “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model,” J. Geophys. Res. 108 (D22), 8851 (2003).

    Google Scholar 

  53. L. J. Donner, B. L. Wyman, R. S. Hemler, L. W. Horowitz, Y. Ming, M. Zhao, J.-C. Golaz, P. Ginoux, S.-J. Lin, M. D. Schwarzkopf et al., “The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3,” J. Clim. 24 (13), 3484–3519 (2011).

    Article  Google Scholar 

  54. Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical Note NCAR/TN-486+STR (National Center for Atmospheric Research, Boulder, CO, 2010). http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/description/cam5_desc.pdf.

  55. V. A. Bakhtin, V. A. Kryukov, B. N. Chetverushkin, and E. V. Shil’nikov, “Extension of the DVM parallel programming model for clusters with heterogeneous nodes,” Dokl. Math. 84 (3), 879–881 (2011).

    Article  MathSciNet  Google Scholar 

  56. B. N. Chetverushkin and E. V. Shilnikov, “Software package for 3D viscous gas flow simulation on multiprocessor computer systems,” Comput. Math. Math. Phys. 48 (2), 295–305 (2008).

    Article  MathSciNet  Google Scholar 

  57. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Problems of modeling climate and climate change,” Izv. Atmos. Ocean. Phys. 42 (5), 568–585 (2006).

    Article  Google Scholar 

  58. V. N. Lykosov, A. V. Glazunov, D. V. Kulyamin et al., Supercomputer Modeling in the Physics of the Climate System (Izd. Mosk. Gos. Univ., Moscow, 2012) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mingalev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkin, B.N., Mingalev, I.V., Chechetkin, V.M. et al. Models of the General Circulation of the Earth’s Atmosphere: Achievements and Directions of Development. Math Models Comput Simul 13, 561–570 (2021). https://doi.org/10.1134/S2070048221040098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221040098

Keywords:

Navigation