Skip to main content
Log in

Non-Catalytic Steam Reforming of C1–C4 Hydrocarbons

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper reports the results of a kinetic modeling and thermodynamic analysis of non-catalytic steam reforming (NCSR) of methane and C2–C4 hydrocarbons at 1400–1800 K. The hydrocarbon-to-syngas conversion sequence and the time periods of the major process steps were identified. The initial step consists of hydrocarbon pyrolysis to acetylene and H2 with essentially no involvement of H2O. Noticeable H2O conversion starts at a significantly later point than thermal hydrocarbon conversion, under the effects of radicals formed from the pyrolysis. The H2O conversion results in the generation of OH radicals, which subsequently react with acetylene to form CO and H2. The key step in the NCSR of C1–C4 hydrocarbons, as well as in their high-temperature interaction with CO2 (carbon-dioxide conversion) is conversion of the acetylene formed from the hydrocarbon pyrolysis. The study findings are important for the optimization of high-temperature syngas production via partial oxidation of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Anderson, J.R. and Boudart, M., Catalysis: Science and Technology, New York: Springer-Verlag, 1984, pp. 1– 117.

  2. Liu, K., Song, C., and Subramani, V., Hydrogen and Syngas Production and Purification Technologies, Blackwell, Oxford: Wiley, 2010.

  3. LeValley, T.L., Richard, A.R., and Fan, M., Int. J. Hydrogen Energy, 2014, vol. 39, pp. 16983–17000. https://doi.org/10.1016/j.ijhydene.2014.08.041

    Article  CAS  Google Scholar 

  4. Aasberg-Petersen, K., Bak Hansen, J.-H., Christensen, T.S., Dybkjaer, I., Christensen, P.S., Stub Nielsen, C., Winter Madsen, S.E.L., and Rostrup-Nielsen, J.R., Appl. Catal. A: Gen., 2001, vol. 221, pp. 379–387. https://doi.org/10.1016/S0926-860X(01)00811-0

    Article  CAS  Google Scholar 

  5. Laosiripojanaa, N. and Sangtongkitcharoen, W., Fuel, 2006, vol. 85, pp. 323–332. https://doi.org/10.1016/j.fuel.2005.06.013

    Article  CAS  Google Scholar 

  6. Uskov, S.I., Potemkin, D.I., Enikeeva, L.V., Snytnikov, P.V., Gubaydullin, I.M., and Sobyanin, V.A., Energies, 2020, vol. 13, no. 13. I. 3393. https://doi.org/10.3390/en13133393

  7. Uskov, S.I., Enikeeva, L.V., Potemkin, D.I., Belyaev, V.D., Snytnikov, P.V., Gubaidullin, I.M., Kirillov, V.A., and Sobyanin, V.A., Catal. Ind., 2017, vol. 9, pp. 104–109. https://doi.org/10.1134/S2070050417020118

    Article  Google Scholar 

  8. Christensen, T.S., Appl. Catal. A: Gen., 1996, vol. 138, no. 2, pp. 285–309. https://doi.org/10.1016/0926-860X(95)00302-9

    Article  CAS  Google Scholar 

  9. Aasberg-Petersen, K., Christensen, T.S., Stub Nielsen, C., and Dybkjær, I., Fuel Process Technol., 2003, vol. 83, nos. 1–3, pp. 253–261. https://doi.org/10.1016/S0378-3820(03)00073-0

    Article  CAS  Google Scholar 

  10. Zyryanova, М.М., Snytnikov, P.V., Amosov, Yu.I., Belyaev, V.D., Kireenkov, V.V., Kuzin, N.A., Vernikovskaya, M.V., Kirillov, V.A., and Sobyanin, V.A., Fuel, 2013, vol. 108, pp. 282–291. https://doi.org/10.1016/j.fuel.2013.02.047

    Article  CAS  Google Scholar 

  11. Uskov, S.I., Potemkin, D.I., Shigarov, A.B., Snytnikov, P.V., Kirillov, V.A., and Sobyanin, V.A., Chem. Eng. J., 2019, vol. 368, pp. 533–540. https://doi.org/10.1016/j.cej.2019.02.189

    Article  CAS  Google Scholar 

  12. Kokka, A., Katsoni, A., Yentekakis, I.V., and Panagiotopoulou, P., Int. J. Hydrogen Energy, 2020, vol. 45, pp. 14849–14866. https://doi.org/10.1016/j.ijhydene.2020.03.194

    Article  CAS  Google Scholar 

  13. Schadel, B.T., Duisberg, M., and Deutschmann, O., Catal. Today, 2009, vol. 142, pp. 42–51. https://doi.org/10.1016/j.cattod.2009.01.008

    Article  CAS  Google Scholar 

  14. Arutyunov, V.S., Shmelev, V.M., Sinev, M.Yu., and Shapovalova, O.V., Chem. Eng. J., 2011, vols. 176–177, pp. 291–294. https://doi.org/10.1016/j.cej.2011.03.084

    Article  CAS  Google Scholar 

  15. Wang, Y., Zeng, H., Banerjee, A., Shi, Y., and Deutschmann, O., Energy Fuels, 2016, vol. 30, pp. 7778–7785. https://doi.org/10.1021/acs.energyfuels.6b01624

    Article  CAS  Google Scholar 

  16. Nourbakhsh, H., Shahrouzi, J.R., Ebrahimi, H., Zamaniyan, A., and Nasr, M.R.J., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 31757–31771. https://doi.org/10.1016/j.ijhydene.2019.10.084

    Article  CAS  Google Scholar 

  17. Dorofeenko, S.O. and Polianczyk, E.V., Chem. Eng. J., 2016, vol. 292, pp. 183–189. https://doi.org/10.1016/j.cej.2016.02.013

    Article  CAS  Google Scholar 

  18. Liu, Y., Zhang, Q., and Wang, T., Combust. Sci. Technol., 2017, vol. 189, no. 5, pp. 908– 922. https://doi.org/10.1080/00102202.2016.1256879

    Article  CAS  Google Scholar 

  19. Dybkjær, I. and Aasberg-Petersen, K., Can. J. Chem. Eng., 2016, vol. 94, pp. 607–612. https://doi.org/10.1002/cjce.22453

    Article  CAS  Google Scholar 

  20. Amiri, T.Y., Ghasemzageh, K., and Lulianelli A., Chem. Eng. Process, 2020, ID 108148. https://doi.org/10.1016/j.cep.2020.108148

  21. Savchenko, V.I., Nikitin, A.V., Ozersky, A.V., Zimin, Y.S., Sedov, I.V., and Arutyunov, V.S., Petrol. Chem., 2020, vol. 60, pp. 818–826. https://doi.org/10.1134/S0965544120070130

    Article  CAS  Google Scholar 

  22. Savchenko, V.I., Nikitin, A.V., Sedov, I.V., Ozerskii, A.V., and Arutyunov, V.S., Chem. Eng. Sci., 2019, vol. 207, pp. 744–751. https://doi.org/10.1016/j.ces.2019.07.012

    Article  CAS  Google Scholar 

  23. Savchenko, V.I., Zimin Ya.S., Nikitin, A.V., Sedov, I.V., and Arutyunov, V.S., J. CO2 Util., 2021, vol. 47, no. 5, ID 101490

  24. Trusov, B.G., Proc. XIV Int. Symp. on Chemical Thermodynamics, 2002, pp. 483–484.

  25. Healy, D., Kalitan, D.M., Aul, C.J., Petersen, E.L., Bourque, G., and Curran, H.J., Energy Fuel, 2010, vol. 24, no. 3, pp. 1521–1528. https://doi.org/10.1021/ef9011005

    Article  CAS  Google Scholar 

  26. NUI Galway. Combustion Chemistry Center. Mechanism Downloads. http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/

  27. Zhang, Q., Wang, J.F., and Wang, T.F., Ind. Eng. Chem. Res., 2017, vol. 56, pp. 5174–5184. https://doi.org/10.1021/acs.iecr.7b00406

    Article  CAS  Google Scholar 

  28. Arutyunov, V., Troshin, K., Nikitin, A., Belyaev, A., Arutyunov, A., Kiryushin, A., and Strekova, L., Chem. Eng. J., 2020, vol. 381. I. 122706. https://doi.org/10.1016/j.cej.2019.122706

  29. Chemical WorkBench, 4.1. Kintech Lab Ltd. http://www.kintechlab.com

  30. Chemical-Kinetic Mechanisms for Combustion Applications.

  31. Konnov, A.A., 28th Symposium (Int.) on Combustion, 2000, pp. 317–319.

  32. Wagman, D.D., Kilpatrick, J.E., Taylor, W.J., Pizer, K.S., and Rossini, F.D., J. Res. Nat. Bur. Stand., 1945, vol. 34, pp. 143–161.

    Article  CAS  Google Scholar 

  33. Indarto, A. and Palguandi, J. Syngas: Production, Applications and Environmental, Nova Science Publishers., 2013, pp. 99–120.

  34. Tabrizi, F.F., Hossein, S.A., Mousavi, S., and Atashi, H., Energ. Convers. Manage, 2015, vol. 103, pp. 1065–1077. https://doi.org/10.1016/j.enconman.2015.07.005

    Article  CAS  Google Scholar 

  35. Pashchenko, D., Int. J. Energ. Res., 2020, vol. 44, no. 1, pp. 438–447. https://doi.org/10.1002/er.4943

    Article  CAS  Google Scholar 

  36. Cui, X. and Kær, S.K., Int. J. Hydrogen Energy, 2018, vol. 43, no. 29, pp. 13009–13021. https://doi.org/10.1016/j.ijhydene.2018.05.083

    Article  CAS  Google Scholar 

  37. Savchenko, V.I., Didenko, L.P., Sheverdenkin, E.V., Rudakov, V.M., and Arutyunov, V.S., Khim. Fiz., 2005, vol. 24, no. 9, pp. 76–83.

    CAS  Google Scholar 

  38. Duff, R.E. and Bauer, S.H., J. Chem. Phys., 1962, vol. 36, p. 1754. https://doi.org/10.1063/1.1701262

    Article  Google Scholar 

Download references

Funding

The experimental study was carried out within the framework of the Fundamental Research Program of the State Academies of Sciences, Theme no. 0089-2019-0018 (IPCP RAS, State Register entry no. AAAA-A19-119022690098-3) and Theme no. 0082-2019-0014 (FRCCP RAS, State Register entry no. AAAA-A20-120020590084-9) using equipment of the Center for Collective Use “Novel petrochemicals, polymer composites, and adhesives” (no. 77601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. S. Zimin.

Ethics declarations

I.V. Sedov, a co-author, is a Deputy Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. Other authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 520–531 https://doi.org/10.31857/S0028242121040109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, V.I., Zimin, Y.S., Nikitin, A.V. et al. Non-Catalytic Steam Reforming of C1–C4 Hydrocarbons. Pet. Chem. 61, 762–772 (2021). https://doi.org/10.1134/S0965544121070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121070021

Keywords:

Navigation