Skip to main content
Log in

Pt and Ru Catalysts Based on Porous Aromatic Frameworks for Hydrogenation of Lignin Biofuel Components

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A platinum catalyst and a ruthenium catalyst were synthesized from a porous aromatic framework, namely PAF-30. The catalyst properties were examined in hydrogenation of phenol and guaiacol at 80–250°C and at a hydrogen pressure of 30 atm in the presence of various solvents. Significant effects of the reaction medium, process conditions, and catalyst morphology on the reaction mechanism were demonstrated. Reaction conditions optimal for complete conversion of phenol and guaiacol to hydrogenation products were selected for both catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., and Weckhuysen, B.M., Chem. Rev., 2010, vol. 110, no. 6, pp. 3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  PubMed  Google Scholar 

  2. Nowakowski, D.J., Bridgwater, A.V., Elliott, D.C., Meier, D., and de Wild, P., J. Anal. Appl. Pyrol., 2010, vol. 88, no. 1, pp. 53–72. https://doi.org/10.1016/j.jaap.2010.02.009

    Article  CAS  Google Scholar 

  3. Ferrini, P. and Rinaldi, R., Angew. Chemie, 2014, vol. 126, no. 33, pp. 8778–8783. https://doi.org/10.1002/ange.201403747

    Article  Google Scholar 

  4. Arapova, O.V., Chistyakov, A.V., Tsodikov, M.V., and Moiseev, I.I., Petrol. Chem., 2020, vol. 60, no. 3, pp. 227–243. https://doi.org/10.1134/S0965544120030044

    Article  CAS  Google Scholar 

  5. Faulon, J.L. and Hatcher, P.G., Energy Fuels, 1994, vol. 8, no. 2, pp. 402–407. https://doi.org/10.1021/ef00044a018

    Article  CAS  Google Scholar 

  6. Meier, D., Ante, R., and Faix, O., Bioresour. Technol., 1992, vol. 40, no. 2, pp. 171–177. https://doi.org/10.1016/0960-8524(92)90205-C

    Article  CAS  Google Scholar 

  7. Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., and Xu, J., Energy Environ. Sci., 2013, vol. 6, no. 3, pp. 994–1007. https://doi.org/10.1039/c2ee23741e

    Article  CAS  Google Scholar 

  8. Van Den Bosch, S., Schutyser, W., Koelewijn, S.F., Renders, T., Courtin, C.M., and Sels, B.F., Chem. Commun., 2015, vol. 51, no. 67, pp. 13158–13161. https://doi.org/10.1039/c5cc04025f

    Article  CAS  Google Scholar 

  9. Pepper, J.M. and Lee, Y.W., Can. J. Chem., 1969, vol. 47, no. 5, pp. 723–727. https://doi.org/10.1139/v69-118

    Article  CAS  Google Scholar 

  10. Arapova, O.V., Chistyakov, A.V., Palankoev, T.A., Bondarenko, G.N., and Tsodikov, M.V., Petrol. Chem., 2020, vol. 60, no. 9, pp. 1019–1025. https://doi.org/10.1134/S0965544120090029

    Article  CAS  Google Scholar 

  11. Hong, D.Y., Miller, S.J., Agrawal, P.K., and Jones, C.W., Chem. Commun., 2010, vol. 46, no. 7, pp. 1038–1040. https://doi.org/10.1039/b918209h

    Article  CAS  Google Scholar 

  12. Runnebaum, R.C., Lobo-Lapidus, R.J., Nimmanwudipong, T., Block, D.E., and Gates, B.C., Energy Fuels, 2011, vol. 25, no. 10, pp. 4776–4785. https://doi.org/10.1021/ef2010699

    Article  CAS  Google Scholar 

  13. González-Borja, M.Á. and Resasco, D.E., Energy Fuels, 2011, vol. 25, no. 9, pp. 4155–4162. https://doi.org/10.1021/ef200728r

    Article  CAS  Google Scholar 

  14. Nie, L., Peng, B., and Zhu, X., ChemCatChem., 2018, vol. 10, no. 5, pp. 1064–1074. https://doi.org/10.1002/cctc.201701413

    Article  CAS  Google Scholar 

  15. Bu, Q., Lei, H., Zacher, A.H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., and Ruan, R., Bioresour. Technol., 2012, vol. 124, pp. 470–477. https://doi.org/10.1016/j.biortech.2012.08.089

    Article  CAS  PubMed  Google Scholar 

  16. Weigold, H., Fuel, 1982, vol. 61, no. 10, pp. 1021–1026. https://doi.org/10.1016/0016-2361(82)90104-1

    Article  CAS  Google Scholar 

  17. Huber, G.W., Iborra, S., and Corma, A., Chem. Rev., 2006, vol. 106, no. 9, pp. 4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Q., Chang, J., Wang, T., and Xu, Y., Energy Convers. Manag., 2007, vol. 48, no. 1, pp. 87–92. https://doi.org/10.1016/j.enconman.2006.05.010

    Article  CAS  Google Scholar 

  19. Furimsky, E., Appl. Catal. A: Gen., 2000, vol. 199, no. 2, pp. 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4

    Article  CAS  Google Scholar 

  20. Wildschut, J., Mahfud, F.H., Venderbosch, R.H., and Heeres, H.J., Ind. Eng. Chem. Res., 2009, vol. 48, no. 23, pp. 10324–10334. https://doi.org/10.1021/ie9006003

    Article  CAS  Google Scholar 

  21. Centeno, A., Maggi, R., and Delmon, B., Stud. Surf. Sci. Catal., 1999, vol. 127, pp. 77–84. https://doi.org/10.1016/s0167-2991(99)80395-4

    Article  CAS  Google Scholar 

  22. Gao, D., Xiao, Y., and Varma, A., Ind. Eng. Chem. Res., 2015, vol. 54, no. 43, pp. 10638–10644. https://doi.org/10.1021/acs.iecr.5b02940

    Article  CAS  Google Scholar 

  23. Karakhanov, E., Kardasheva, Y., Kulikov, L., Maximov, A., Zolotukhina, A., Vinnikova, M., and Ivanov, A., Catalysts, 2016, vol. 6, no. 8, pp. 122. https://doi.org/10.3390/catal6080122

    Article  CAS  Google Scholar 

  24. Karakhanov, E.A., Boronoev, M.P., Filippova, T.Yu., and Maksimov, A.L., Petrol. Chem., 2018, vol. 58, no. 5, pp. 407–411. https://doi.org/10.1134/S0965544118050080

    Article  CAS  Google Scholar 

  25. Boronoev, M.P., Shakirov, I.I., Ignat’eva, V.I., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2019, vol. 59, pp. 1300–1306. https://doi.org/10.1134/S096554411912003X

    Article  CAS  Google Scholar 

  26. Olcese, R.N., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., and Dufour, A., Appl. Catal. B: Environ., 2012, vol. 115–116, pp. 63–73. https://doi.org/10.1016/j.apcatb.2011.12.005

    Article  CAS  Google Scholar 

  27. Hong, Y. and Wang, Y., Catal. Commun., 2017, vol. 100, pp. 43–47. https://doi.org/10.1016/j.catcom.2017.06.028

    Article  CAS  Google Scholar 

  28. Zhao, C., Kasakov, S., He, J., and Lercher, J.A., J. Catal., 2012, vol. 296, pp. 12–23. https://doi.org/10.1016/j.jcat.2012.08.017

    Article  CAS  Google Scholar 

  29. Jin, W., Pastor-Pérez, L., Villora-Picó, J.J., Sepúlveda-Escribano, A., Gu, S., and Reina, T.R., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 19, pp. 16041–16049. https://doi.org/10.1021/acssuschemeng.9b02712

    Article  CAS  Google Scholar 

  30. Kumar, A., Anushree, Kumar, J., and Bhaskar, T., J. Energy Inst., 2019, vol. 93, no. 1, pp. 235–271 https://doi.org/10.1016/j.joei.2019.03.005

    Article  CAS  Google Scholar 

  31. Bjelić, A., Grilc, M., Huš, M., and Likozar, B., Chem. Eng. J., 2019, vol. 359., 2018, pp. 305–320. https://doi.org/10.1016/j.cej.2018.11.107

    Article  CAS  Google Scholar 

  32. Runnebaum, R.C., Nimmanwudipong, T., Limbo, R.R., Block, D.E., and Gates, B.C., Catal. Lett., 2012, vol. 142, no. 1, pp. 7–15. https://doi.org/10.1007/s10562-011-0742-8

    Article  CAS  Google Scholar 

  33. Nie, L. and Resasco, D.E., J. Catal., 2014, vol. 317, pp. 22–29. https://doi.org/10.1016/j.jcat.2014.05.024

    Article  CAS  Google Scholar 

  34. Nimmanwudipong, T., Runnebaum, R.C., Block, D.E., and Gates, B.C., Energy Fuels, 2011, vol. 25, no. 8, pp. 3417–3427. https://doi.org/10.1021/ef200803d

    Article  CAS  Google Scholar 

  35. Payormhorm, J., Kangvansaichol, K., Reubroycharoen, P., Kuchonthara, P., and Hinchiranan, N., Bioresour. Technol., 2013, vol. 139, pp. 128–135. https://doi.org/10.1016/j.biortech.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  36. Hu, J., Zhang, S., Xiao, R., Jiang, X., Wang, Y., Sun, Y., and Lu, P., Bioresour. Technol., 2019, vol. 279, pp. 228–233. https://doi.org/10.1016/j.biortech.2019.01.132

    Article  CAS  PubMed  Google Scholar 

  37. Chen, W., McClelland, D.J., Azarpira, A., Ralph, J., Luo, Z., and Huber, G.W., Green Chem., 2015, vol. 18, no. 1, pp. 271–281. https://doi.org/10.1039/c5gc02286j

    Article  Google Scholar 

  38. Roldugina, E.A., Naranov, E.R., Maximov, A.L., and Karakhanov, E.A., Appl. Catal. A: Gen., 2018, vol. 553, pp. 24–35. https://doi.org/10.1016/j.apcata.2018.01.008

    Article  CAS  Google Scholar 

  39. Roldugina, E.A., Glotov, A.P., Isakov, A.L., Maksimov, A.L., Vinokurov, V.A., and Karakhanov, E.A., Russ. J. Appl. Chem., 2019, vol. 92, pp. 1170–1178. https://doi.org/10.1134/S0044461819080176

    Article  CAS  Google Scholar 

  40. Zhu, X., Lobban, L.L., Mallinson, R.G., and Resasco, D.E., J. Catal., 2011, vol. 281, no. 1, pp. 21–29. https://doi.org/10.1016/j.jcat.2011.03.030

    Article  CAS  Google Scholar 

  41. Ma, Z. and van Bokhoven, J.A., ChemCatChem., 2012, vol. 4, no. 12, pp. 2036–2044. https://doi.org/10.1002/cctc.201200401

    Article  CAS  Google Scholar 

  42. Yu, Y., Li, X., Su, L., Zhang, Y., Wang, Y., and Zhang, H., Appl. Catal. A: Gen., 2012, vol. 447–448, pp. 115–123. https://doi.org/10.1016/j.apcata.2012.09.012

    Article  CAS  Google Scholar 

  43. Ben, T. and Qiu, S., CrystEngComm., 2013, vol. 15, no. 1, pp. 17–26. https://doi.org/10.1039/c2ce25409c

    Article  CAS  Google Scholar 

  44. Tian, Y. and Zhu, G., Chem. Rev., 2020, vol. 120, no. 16, pp. 8934–8986; https://doi.org/10.1134/S0965544117020177

    Article  CAS  PubMed  Google Scholar 

  45. Maximov, A., Zolotukhina, A., Kulikov, L., Kardasheva, Y., and Karakhanov, E., React. Kinet. Mech. Catal., 2016, vol. 117, no. 2, pp. 729–743. https://doi.org/10.1007/s11144-015-0956-7

    Article  CAS  Google Scholar 

  46. Ben, T., Ren, H., Shengqian, M., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S., and Zhu, G., Angew. Chemie Int. Ed., 2009, vol. 48, no. 50, pp. 9457–9460. https://doi.org/10.1002/anie.200904637

    Article  CAS  Google Scholar 

  47. Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X., and Qiu, S., Energy Environ. Sci., 2011, vol. 4, no. 10, pp. 3991–3999. https://doi.org/10.1039/C1EE01222C

    Article  CAS  Google Scholar 

  48. Wang, F., Mielby, J., Richter, F.H., Wang, G., Prieto, G., Kasama, T., Weidenthaler, C., Bongard, H.-J., Kegnaes, S., Fürstner, A., and Schüth, F., Angew. Chemie Int. Ed., 2014, vol. 53, no. 33, pp. 8645–8648. https://doi.org/10.1002/anie.201404912

    Article  CAS  Google Scholar 

  49. Kulikov, L.A., Terenina M.V, Kryazheva, I.Y., and Karakhanov, E.A., Petrol. Chem., 2017, vol. 57, no. 3, pp. 222–229. https://doi.org/10.1134/S0965544117020177

    Article  CAS  Google Scholar 

  50. Maksimov, A.L., Karakhanov, E.A., Kulikov, L.A., and Terenina, M.V., Petrol. Chem., 2017, vol. 57, no. 7, pp. 589–594. https://doi.org/10.1134/S0965544117070076

    Article  CAS  Google Scholar 

  51. Kulikov, L.A., Boronoev, M.P., Makeeva, D.A., Nenasheva, M.V., Egazar’yants, S.V., and Karakhanov, E.A., Chem. Technol. Fuels Oils, 2018, vol. 53, pp. 879–884. https://doi.org/10.1007/s10553-018-0876-0

    Article  CAS  Google Scholar 

  52. Boronoev, M.P., Vinnikova, M.A., Ignat’eva, V.I., Kulikov, L.A., Putilin, F.N., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2017, vol. 10, pp. 855–858. https://doi.org/10.1134/S0965544117100048

    Article  Google Scholar 

  53. Batryshin, R.A., Makeeva, D.A., Kulikov, L.A., Kardasheva, Y.S., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2019, vol. 59, no. 7 P. 575–580. https://doi.org/10.1134/S0965544119060069

  54. Kulikov, L.A., Boronoev, M.P., Kardasheva, Yu.S., and Terenina, M.V., Petrol. Chem., 2020, vol. 60, pp. 307–309. https://doi.org/10.1134/S0965544120030123

    Article  CAS  Google Scholar 

  55. Karakhanov, E., Maximov, A., Terenina, M., Vinokurov, V., Kulikov, L., Makeeva, D., and Glotov, A. Catal. Today, 2020, vol. 357, pp. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028

    Article  CAS  Google Scholar 

  56. Kulikov, L., Kalinina, M., Makeeva, D., Maximov, A., Kardasheva, Y., Terenina, M., and Karakhanov, E., Catalysts., 2020, vol. 10, no. 10. I. 1106. https://doi.org/10.3390/catal10101106

  57. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, no. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  58. Vilian, A.T.E., Puthiaraj, P., Kwak, C.H., Hwang, S.K., Huh, Y.S., Ahn, W.S., and Han, Y.K., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 20, pp. 12740–12747. https://doi.org/10.1021/acsami.6b03942

    Article  CAS  PubMed  Google Scholar 

  59. Shangguan, J., Pfriem, N., and Chin, Y.H., J. Catal., 2019, vol. 370, pp. 186–199. https://doi.org/10.1016/j.jcat.2018.11.036

    Article  CAS  Google Scholar 

  60. Hellinger, M., De Carvalho, H.W.P., Baier, S., Gharnati, L., and Grunwaldt, J.D., Chemie-Ingenieur-Technik., 2015, vol. 87, no. 12, pp. 1771–1780. https://doi.org/10.1002/cite.201500143

    Article  CAS  Google Scholar 

  61. Güvenatam, B., Kurşun, O., Heeres, E.H.J., Pidko, E.A., and Hensen, E.J.M., Catal. Today, 2014, vol. 233, pp. 83–91. https://doi.org/10.1016/j.cattod.2013.12.011

    Article  CAS  Google Scholar 

  62. Newman, C., Zhou, X., Goundie, B., Ghampson, I.T., Pollock, R.A., Ross, Z., Wheeler, M.C., Meulenberg, R.W., Austin, R.N., and Frederick, B.G., Appl. Catal. A: Gen., 2014, vol. 477, pp. 64–74. https://doi.org/10.1016/j.apcata.2014.02.030

    Article  CAS  Google Scholar 

  63. Hellinger, M., Carvalho, H.W.P., Baier, S., Wang, D., Kleist, W., and Grunwaldt, J.D., Appl. Catal. A: Gen., 2015, vol. 490, pp. 181–192. https://doi.org/10.1016/j.apcata.2014.10.043

    Article  CAS  Google Scholar 

  64. Talukdar, A.K., Bhattacharyya, K.G., and Sivasanker, S., Appl. Catal. A: Gen., 1993, vol. 96, no. 2, pp. 229–239. https://doi.org/10.1016/0926-860X(90)80012-4

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed with financial support from the Russian Science Foundation (grant no. 20-19-00380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kulikov.

Ethics declarations

A.L. Maximov, a co-author, is the Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 461–472 https://doi.org/10.31857/S0028242121040109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, L.A., Makeeva, D.A., Kalinina, M.A. et al. Pt and Ru Catalysts Based on Porous Aromatic Frameworks for Hydrogenation of Lignin Biofuel Components. Pet. Chem. 61, 711–720 (2021). https://doi.org/10.1134/S0965544121070045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121070045

Keywords:

Navigation