Skip to main content
Log in

Hydroconversion of n-Hexadecane on Zeolite-Containing Sulfide-Based Catalysts: Influence of Nitrogen Impurity in the Feedstock on the Hydroisomerization Selectivity

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Bifunctional zeolite-containing catalysts based on transition metal sulfides were synthesized, their physicochemical characteristics were determined, and the catalytic properties toward n-hexadecane hydroconversion were examined. ZSM-5, Beta, and NH4NaY zeolites were tested as acidic components of the catalysts. The highest selectivity toward isomerization reaction was afforded by the NH4NaY zeolite-containing sulfide-based catalyst. With the view to controlling the selectivity toward cracking and isomerization reactions, the influence of the presence of nitrogen-containing bases in the feedstock was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Akhmedov, V.M. and Al-Khowaiter, S.H., Catal. Rev., 2007, vol. 49, no. 1, pp. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  2. Weyda, H. and Köhler, E., Catal. Today, 2003, vol. 81, no. 1, pp. 51–55. https://doi.org/10.1016/S0920-5861(03)00101-9

    Article  CAS  Google Scholar 

  3. Konnov, S.V., Monakhova, Y.V., Knyazeva, E.E., Yushchenko, V.V., Ponomareva, O.A., and Ivanova, I.I., Petrol. Chem., 2009, vol. 49, no. 1, pp. 79–85. https://doi.org/10.1134/S0965544109010149

    Article  Google Scholar 

  4. Grudanova, A.I., Khavkin, V.A., Gulyaeva, L.A., Sergienko, S.A., Krasil’nikova, L.A., and Mis’ko, O.M., Mir Nefteprod., Vestn. Neft. Komp., 2013, vol. 12, pp. 3–7.

    Google Scholar 

  5. Onishchenko, M.I. and Maksimov, A.L., Petrol. Chem., 2018, vol. 58, no. 8, pp. 651–658. https://doi.org/10.1134/S0965544118080194

    Article  CAS  Google Scholar 

  6. Lysenko, S.V., Kryukov, I.O., Sarkisov, O.A., Abikenova, A.B., Baranova, S.V., Ostroumova, V.A., Kardashev, S.V., Kulikov, A.B., and Karakhanov, E.A., Petrol. Chem., 2011, vol. 51, no. 3, pp. 151–156. https://doi.org/10.1134/S0965544111030091

    Article  CAS  Google Scholar 

  7. Rezgui, Y. and Guemini, M., Appl. Catal., 2005, vol. 282, nos. 1–2, pp. 45–53. https://doi.org/10.1016/j.apcata.2004.11.044

    Article  CAS  Google Scholar 

  8. Chavarría, J.C., Ramírez, J., González, H., and Baltanas, M.A., Catal. Today, 2004, vol. 98, nos. 1–2 spec. issue, pp. 235–242. https://doi.org/10.1016/j.cattod.2004.07.037

    Article  CAS  Google Scholar 

  9. Guisnet, M., Catal. Today, 2013, vols. 218–219, pp. 123–134. https://doi.org/10.1016/j.cattod.2013.04.028

    Article  CAS  Google Scholar 

  10. Weitkamp, J., Jacobs, P.A., and Martens, J.A., Appl. Catal., 1983, vol. 8, no. 1, pp. 123–141. https://doi.org/10.1016/0166-9834(83)80058-X

    Article  CAS  Google Scholar 

  11. Martens, G.G., Marin, G.B., Martens, J.A., Jacobs, P.A., and Baron, G.V., J. Catal., 2000, vol. 195, no. 2, pp. 253–267. https://doi.org/10.1006/jcat.2000.2993

    Article  CAS  Google Scholar 

  12. Galperin, L.B., Appl. Catal., 2001, vol. 209, nos. 1–2, pp. 257–268. https://doi.org/10.1016/S0926-860X(00)00759-6

    Article  CAS  Google Scholar 

  13. Pimerzin, A.A., Nikul’shin, P.A., Mozhaev, A.V., and Pimerzin, A.A., Petrol. Chem., 2013, vol. 53, no. 4, pp. 245–254. https://doi.org/10.1134/S0965544113030067

    Article  CAS  Google Scholar 

  14. Pimerzin, A.A., Roganov, A.A., Verevkin, S.P., Konnova, M.E., Pilshchikov, V.A., and Pimerzin, A.A., Catal. Today, 2019, vol. 329, pp. 71–81. https://doi.org/10.1016/j.cattod.2018.12.034

    Article  CAS  Google Scholar 

  15. Glotov, A.P., Vutolkina, A.V., Vinogradov, N.A., Pimerzin, A.A., Vinokurov, V.A., and Pimerzin, A.A., Catal. Today, 2020, in press. https://doi.org/10.1016/j.cattod.2020.10.010

  16. Glotov, A., Stytsenko, V., Artemova, M., Kotelev, M., Ivanov, E., Gushchin, P., and Vinokurov, V., Catalysts, 2019, vol. 9, no. 4, pp. 384–396. https://doi.org/10.3390/catal9040384

    Article  CAS  Google Scholar 

  17. Zhu, S., Liu, S., Zhang, H., Lü, E., and Ren, J., Cuihua Xuebao/Chin. J. Catal., 2014, vol. 35, no. 10, pp. 1676–1686. https://doi.org/10.1016/S1872-2067(14)60133-9

    Article  CAS  Google Scholar 

  18. Smolikov, M.D., Dzhikiya, O.V., Zatolokina, E.V., Kir’yanov, D.I., and Belyi, A.S., Petrol. Chem., 2009, vol. 49, no. 6, pp. 473–480. https://doi.org/10.1134/S096554410906005X

    Article  Google Scholar 

  19. Yadav, R. and Sakthivel, A., Appl. Catal. A, 2014, vol. 481, pp. 143–160. https://doi.org/10.1016/j.apcata.2014.05.010

    Article  CAS  Google Scholar 

  20. Lian, Z., Yang, C., Shi, L., Meng, X., Liu, N., Yang, Y., and Wang, X., Appl. Organomet. Chem., 2018, vol. 32, no. 12, pp. 4587–4598. https://doi.org/10.1002/aoc.4587

    Article  CAS  Google Scholar 

  21. Meng, X., Lian, Z., Wang, X., Shi, L., and Liu, N., Fuel, 2020, vol. 270, pp. 117426–117435. https://doi.org/10.1016/j.fuel.2020.117426

    Article  CAS  Google Scholar 

  22. Regali, F., Liotta, L.F., Venezia, A.M., Montes, V., Boutonnet, M., and Järås, S., Catal. Today, 2014, vol. 223, pp. 87–96. https://doi.org/10.1016/j.cattod.2013.08.028

    Article  CAS  Google Scholar 

  23. Kinger, G. and Vinek, H., Appl. Catal. A, 2001, vol. 218, nos. 1–2, pp. 139–149. https://doi.org/10.1016/S0926-860X(01)00629-9

    Article  CAS  Google Scholar 

  24. Maesen, T.L.M., Schenk, M., Vlugt, T.J.H., De Jonge, J.P., and Smit, B., J. Catal., 1999, vol. 188, no. 2, pp. 403–412. https://doi.org/10.1006/jcat.1999.2673

    Article  CAS  Google Scholar 

  25. Corma, A., Martinez, A., Pergher, S., Peratello, S., Perego, C., and Bellusi, G., Appl. Catal. A, 1997, vol. 152, no. 1, pp. 107–125. https://doi.org/10.1016/S0926-860X(96)00338-9

    Article  CAS  Google Scholar 

  26. Zhang, W. and Smirniotis, P.G., J. Catal., 1999, vol. 182, no. 2, pp. 400–416. https://doi.org/10.1006/jcat.1998.2337

    Article  CAS  Google Scholar 

  27. Calemma, V., Peratello, S., and Perego, C., Appl. Catal., 2000, vol. 190, nos. 1–2, pp. 207–218. https://doi.org/10.1016/S0926-860X(99)00292-6

    Article  CAS  Google Scholar 

  28. Kazakov, M.O., Nadeina, K.A., Danilova, I.G., Dik, P.P., Klimov, O.V., Pereyma, V.Y., Paukshtis, E.A., Golubev, I.S., Prosvirin, I.P., Gerasimov, E.Y., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., Catal. Today, 2019, vol. 329, pp. 108–115. https://doi.org/10.1016/j.cattod.2019.01.003

    Article  CAS  Google Scholar 

  29. Kazakov, M.O., Nadeina, K.A., Danilova, I.G., Dik, P.P., Klimov, O.V., Pereyma, V.Y., Gerasimov, E.Y., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., Catal. Today, 2018, vol. 305, pp. 117–125. https://doi.org/10.1016/j.cattod.2017.08.048

    Article  CAS  Google Scholar 

  30. Lee, S.W. and Ihm, S.K., Fuel, 2014, vol. 134, pp. 237–243. https://doi.org/10.1016/j.fuel.2014.05.068

    Article  CAS  Google Scholar 

  31. Galperin, L.B., Stud. Surf. Sci. Catal. A, 2000, vol. 130, pp. 257–262. https://doi.org/10.1016/s0167-2991(00)80966-0

    Article  Google Scholar 

  32. Nikulshin, P.A., Ishutenko, D.I., Mozhaev, A.A., Maslakov, K.I., and Pimerzin, A.A., J. Catal., 2014, vol. 312, pp. 152–169. https://doi.org/10.1016/j.jcat.2014.01.014

    Article  CAS  Google Scholar 

  33. Pimerzin, A.A., Savinov, A.A., Ishutenko, D.I., Verevkin, S.P., and Pimerzin, A.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 12, pp. 1772–1779. https://doi.org/10.1134/S1070427219120198

    Article  CAS  Google Scholar 

  34. Pimerzin, A., Savinov, A., Vutolkina, A., Makova, A., Glotov, A., Vinokurov, V., and Pimerzin, A., Catalysts, 2020, vol. 10, no. 6, p. 594. https://doi.org/10.3390/catal10060594

    Article  CAS  Google Scholar 

  35. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  36. Lippens, B.C. and de Boer, J.H., J. Catal., 1965, vol. 4, no. 3, pp. 319–323. https://doi.org/10.1016/0021-9517(65)90307-6

    Article  CAS  Google Scholar 

  37. Dik, P.P., Danilova, I.G., Golubev, I.S., Kazakov, M.O., Nadeina, K.A., Budukva, S.V., Pereyma, V.Y., Klimov, O.V., Prosvirin, I.P., Gerasimov, E.Y., Bok, T.O., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., Fuel, 2019, vol. 237, pp. 178–190. https://doi.org/10.1016/j.fuel.2018.10.012

    Article  CAS  Google Scholar 

  38. Vu, X.H., Armbruster, U., and Martin, A., Catalysts, 2016, vol. 6, no. 12, pp. 183–206. https://doi.org/10.3390/catal6120183

    Article  CAS  Google Scholar 

  39. Whiting, G.T., Meirer, F., Mertens, M.M., Bons, A.-J., Weiss, B.M., Stevens, P.A., de Smit, E., and Weckhuysen, B.M., ChemCatChem., 2015, vol. 7, no. 8, pp. 1312–1321. https://doi.org/10.1002/cctc.201402897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Michels, N.L., Mitchell, S., and Pérez-Ramírez, J., ACS Catal., 2014, vol. 4, no. 8, pp. 2409–2417. https://doi.org/10.1021/cs500353b

    Article  CAS  Google Scholar 

  41. Abramova, A.V., Slivinskii, E.V., Goldfarb, Y.Y., Panin, A.A., Kulikova, E.A., and Kliger, G.A., Kinet. Catal., 2005, vol. 46, no. 5, pp. 758–769. https://doi.org/10.1007/s10975-005-0133-5

    Article  CAS  Google Scholar 

  42. Liao, J., Zhang, Y., Fan, L., Chang, L., and Bao, W., Ind. Eng. Chem. Res., 2019, vol. 58, no. 11, pp. 4572–4580. https://doi.org/10.1021/acs.iecr.8b05046

    Article  CAS  Google Scholar 

  43. Barzetti, T., Selli, E., Moscotti, D., and Forni, L., J. Chem. Soc., 1996, vol. 92, no. 8, pp. 1401–1407. https://doi.org/10.1039/ft9969201401

    Article  CAS  Google Scholar 

  44. Alvarez, F., Ribeiro, F.R., Perot, G., Thomazeau, C., and Guisnet, M., J. Catal., 1996, vol. 162, no. 2, pp. 179–189. https://doi.org/10.1006/jcat.1996.0275

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Sasol Company (Germany) for providing the pseudoboehmite powder sample.

Funding

This study was financially supported by the by the Russian Science Foundation (project no. 19-79-00293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pimerzin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 494–503 https://doi.org/10.31857/S0028242121040055.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, N.A., Rubtsova, M.I., Glotov, A.P. et al. Hydroconversion of n-Hexadecane on Zeolite-Containing Sulfide-Based Catalysts: Influence of Nitrogen Impurity in the Feedstock on the Hydroisomerization Selectivity. Pet. Chem. 61, 739–747 (2021). https://doi.org/10.1134/S0965544121070057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121070057

Keywords:

Navigation