Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of novel single-nucleotide variants altering RNA splicing of PKD1 and PKD2

Abstract

The development of sequencing techniques identified numerous genetic variants, and accurate evaluation of the clinical significance of these variants facilitates the diagnosis of Mendelian diseases. In the present study, 549 rare single- nucleotide variants of uncertain significance were extracted from the ADPKD and ClinVar databases. MaxEntScan scoresplice is an in silico splicing prediction tool that was used to analyze rare PKD1 and PKD2 variants of unknown significance. An in vitro minigene splicing assay was used to verify 37 splicing-altering candidates that were located within seven residues of the splice donor sequence excluding canonical GT dinucleotides or within 21 residues of the acceptor sequence excluding canonical AG dinucleotides of PKD1 and PKD2. We demonstrated that eight PKD1 variants alter RNA splicing and were predicted to be pathogenic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support this study are available from the corresponding author upon request.

References

  1. Dalgaard OZ. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med Scandinavica Supplementum. 1957;328:1–255.

    CAS  Google Scholar 

  2. Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935-1980. Am J Kidney Dis. 1983;2:630–9.

    Article  CAS  Google Scholar 

  3. Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters D, Torres VE. Polycystic kidney disease. Nat Rev Dis Prim. 2018;4:50.

    Article  Google Scholar 

  4. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369:1287–301.

    Article  Google Scholar 

  5. Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67:792–810.

    Article  Google Scholar 

  6. Cornec-Le Gall E, Torres VE, Harris PC. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J Am Soc Nephrol. 2018;29:13–23.

    Article  Google Scholar 

  7. Cornec-Le Gall E, Audrézet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24:1006–13.

    Article  Google Scholar 

  8. Heyer CM, Sundsbak JL, Abebe KZ, Chapman AB, Torres VE, Grantham JJ, et al. Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27:2872–84.

    Article  CAS  Google Scholar 

  9. Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions. J Cell Physiol. 2019;234:12451–70.

    Article  CAS  Google Scholar 

  10. Ito K, Patel PN, Gorham JM, McDonough B, DePalma SR, Adler EE, et al. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. Proc Natl Acad Sci USA. 2017;114:7689–94.

    Article  CAS  Google Scholar 

  11. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  Google Scholar 

  12. Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat. 2007;28:150–8.

    Article  CAS  Google Scholar 

  13. Wimmer K, Roca X, Beiglböck H, Callens T, Etzler J, Rao AR, et al. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5’ splice-site disruption. Hum Mutat. 2007;28:599–612.

    Article  CAS  Google Scholar 

  14. Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med. 2012;18:472–82.

    Article  CAS  Google Scholar 

  15. Anna, A & Monika, G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet. 2018;59:253–68.

  16. Burset M, Seledtsov IA, Solovyev VV. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic acids Res. 2000;28:4364–75.

    Article  CAS  Google Scholar 

  17. Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. 2005;42:737–48.

    Article  CAS  Google Scholar 

  18. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–71.

    Article  CAS  Google Scholar 

  19. Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.

    Article  Google Scholar 

  20. Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Computational Biol. 1997;4:311–23.

    Article  CAS  Google Scholar 

  21. Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Computational Biol. 2004;11:377–94.

    Article  CAS  Google Scholar 

  22. Jian X, Boerwinkle E, Liu X. In silico tools for splicing defect prediction: a survey from the viewpoint of end users. Genet Med. 2014;16:497–503.

    Article  CAS  Google Scholar 

  23. Tang R, Prosser DO, Love DR. Evaluation of bioinformatic programmes for the analysis of variants within splice site consensus regions. Adv Bioinforma. 2016;2016:5614058.

    Article  Google Scholar 

  24. Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic acids Res. 2014;42:13534–44.

    Article  CAS  Google Scholar 

  25. Houdayer C, Caux-Moncoutier V, Krieger S, Barrois M, Bonnet F, Bourdon V, et al. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat. 2012;33:1228–38.

    Article  CAS  Google Scholar 

  26. Patel, PN, Gorham, JM, Ito, K & Seidman, CE. In vivo and In vitro methods to identify DNA sequence variants that alter RNA Splicing. Current Protoc Hum Genet. 2018;97:e60.

  27. Sharma N, Sosnay PR, Ramalho AS, Douville C, Franca A, Gottschalk LB, et al. Experimental assessment of splicing variants using expression minigenes and comparison with in silico predictions. Hum Mutat. 2014;35:1249–59.

    Article  CAS  Google Scholar 

  28. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e524.

    Article  CAS  Google Scholar 

  29. Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015;88:17–27.

    Article  Google Scholar 

  30. Trujillano D, Bullich G, Ossowski S, Ballarín J, Torra R, Estivill X, et al. Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing. Mol Genet Genom Med. 2014;2:412–21.

    Article  CAS  Google Scholar 

  31. Mallawaarachchi AC, Hort Y, Cowley MJ, McCabe MJ, Minoche A, Dinger ME, et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur J Hum Genet. 2016;24:1584–90.

    Article  CAS  Google Scholar 

  32. Jagadeesh KA, Paggi JM, Ye JS, Stenson PD, Cooper DN. S-CAP extends pathogenicity prediction to genetic variants that affect RNA splicing. Nat Genet. 2019;51:755–63.

    Article  CAS  Google Scholar 

  33. Kergourlay V, Raï G, Blandin G, Salgado D, Béroud C, Lévy N, et al. Identification of splicing defects caused by mutations in the dysferlin gene. Hum Mutat. 2014;35:1532–41.

    Article  CAS  Google Scholar 

  34. Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol cell Biol. 2017;18:655–70.

    Article  CAS  Google Scholar 

  35. Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol. 2015;11:451–64.

    Article  CAS  Google Scholar 

  36. Weston BS, Bagnéris C, Price RG, Stirling JL. The polycystin-1 C-type lectin domain binds carbohydrate in a calcium-dependent manner, and interacts with extracellular matrix proteins in vitro. Biochim Biophys Acta. 2001;1536:161–76.

    Article  CAS  Google Scholar 

  37. Yu S, Hackmann K, Gao J, He X, Piontek K, García-González MA, et al. Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc Natl Acad Sci USA. 2007;104:18688–93.

    Article  CAS  Google Scholar 

  38. Ong AC, Harris PC. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int. 2015;88:699–710.

    Article  CAS  Google Scholar 

  39. Salehi-Najafabadi Z, Li B, Valentino V, Ng C, Martin H, Yu Y, et al. Extracellular loops are essential for the assembly and function of polycystin receptor-ion channel complexes. J Biol Chem. 2017;292:4210–21.

    Article  CAS  Google Scholar 

  40. Dionnet E, Defour A, Da Silva N, Salvi A, Lévy N, Krahn M, et al. Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. Hum Mutat. 2020.

  41. Holla ØL, Nakken S, Mattingsdal M, Ranheim T, Berge KE, Defesche JC, et al. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: comparison of wet-lab and bioinformatics analyses. Mol Genet Metab. 2009.

  42. Rowlands, CF & Baralle, D. Machine learning approaches for the prioritization of genomic variants impacting pre-mRNA splicing. 1019;8:1513.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no 81871203).

Funding

Y.Y. is funded by the National Natural Science Foundation of China, grant/award number: 81871203.

Author information

Authors and Affiliations

Authors

Contributions

S.X. participation in the whole study, drafting of the manuscript, and data analysis; S.X., X.L., Y.Z., Z.W., X.Z., T.H., and X.T. carried out the experiments; D.T. and Y.L. data curation; Y.Y. writing—review, editing, correspondence, and proofs of the manuscript.

Corresponding author

Correspondence to Yuan Yang.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Leng, X., Tao, D. et al. Identification of novel single-nucleotide variants altering RNA splicing of PKD1 and PKD2. J Hum Genet 67, 27–34 (2022). https://doi.org/10.1038/s10038-021-00959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00959-1

Search

Quick links