Skip to main content

Advertisement

Log in

Measurement of the neutron total cross sections of aluminum at the back-n white neutron source of CSNS

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2021

This article has been updated

Abstract

Aluminum and its alloys are widely used in the nuclear industry. Therefore, it is essential to precisely measure and accurately know the neutron total cross section of aluminum in the wider energy region. The measurement is performed by using the transmission method at the Back-n White Neutron Source of CSNS. Two aluminum samples 70 mm in diameter and thicknesses of 40 and 60 mm, respectively, were positioned at 55 m from the neutron source. The transmission detector consisted of a multi-layer fast fission chamber loaded with \(^{235}\)U and \(^{238}\)U, and it was located at the 76-m measurement station. By applying the time-of-flight technique, it was possible to extract the n+\(^{27}\)Al total cross section in a wide energy region, from 1 eV to 20 MeV, after the correction for the double-bunch mode of the CSNS accelerator. The total cross sections obtained with the two Al samples are consistent and the results obtained with the \(^{235}\)U fission cells are in good agreement with that with \(^{238}\)U in the energy range of 1–20 MeV. The uncertainty of neutron total cross section measured with \(^{235}\)U for 40 mm and 60 mm thick aluminum is 0.7–22.3% and 0.6–12.4% in the energy range of 10 keV–20 MeV. Results are in fair agreement with respect to previous data and evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

Change history

References

  1. C. Elster, T. Cheon, E. F. Redish, and P. C. Tandy, Phys. Rev. C 41, 814 (1990). DOI: 10.1103/PhysRevC.41.814

    Article  ADS  Google Scholar 

  2. R. W. Finlay, W. P. Abfalterer, G. Fink, E. Montei, T. Adami, P. W. Lisowski, G. L. Morgan, and R. C. Haight, Phys. Rev. C 47, 237 (1993). DOI: 10.1103/PhysRevC.47.237

    Article  ADS  Google Scholar 

  3. Z. Wu et al., Nuclear Physics Experiments, 3rd edn. (Atomic Energy Press, Beijing, China, 1994)

    Google Scholar 

  4. M. Salvatores, Journal of Nuclear Science and Technology 39, 4 (2002)

    Article  Google Scholar 

  5. X. Yang, H. Li, X.-H. Liu, S.-S. Wang, J.-W. Wang, Chin. Mater. Sci. Technol. Equip. 3 (2014)

  6. Q. An, H. Bai, J. Bao, P. Cao, Y. Chen, Y. Chen, P. Cheng, R. Fan, C. Feng, J. Gu et al., Journal of Instrumentation 12, P07022 (2017)

    Article  Google Scholar 

  7. H. Jing, J. Tang, H. Tang, H. Xia, T. Liang, Z. Zhou, Q. Zhong, X. Ruan, Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrometers, Detectors and Associated Equipment 621, 91 (2010). https://doi.org/10.1016/j.nima.2010.06.097

    Article  Google Scholar 

  8. Network of Nuclear Reaction Data Centres (NRDC) (2021) Experimental nuclear reaction data, https://www-nds.iaea.org/exfor/servlet/X4sSearch5

  9. D. G. Foster and D. W. Glasgow, Phys. Rev. C 3, 576 (1971). DOI: 10.1103/PhysRevC.3.576

    Article  ADS  Google Scholar 

  10. F.G. Perey, T.A. Love, W.E. Kinney, https://doi.org/10.2172/4606594

  11. R.B. Schwartz, R.A. Schrack, H.T Heaton,Nuclear Science and Engineering 54, 322 (1974). https://doi.org/10.13182/NSE74-A23422

  12. M. Ohkubo, Neutron Total Cross Section Measurements on Oxygen, aluminum and carbon below 930 keV, Tech. Rep. (Japan Atomic Energy Research Inst, 1987)

  13. X.-Y. Liu, Y.-W. Yang, R. Liu, J. Wen, Z.-W. Wen, Z.-J. Han, Z.-Z. Ren, Q. An, H.-Y. Bai, J. Bao et al., Nuclear Science and Techniques 30, 1 (2019)

    Article  ADS  Google Scholar 

  14. Y. Yang, Z. Wen, Z. Han, M. Wang, R. Liu, J. Wen, X. Liu, Y. Chen et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrometers, Detectors and Associated Equipment 940, 486 (2019)

    Article  Google Scholar 

  15. A. Carlson, V.G. Pronyaev, R. Capote, G. Hale, Z.-P. Chen, I. Duran, F.-J. Hambsch, S. Kunieda, W. Mannhart, B. Marcinkevicius et al., Nuclear Data Sheets 148, 143 (2018)

    Article  ADS  Google Scholar 

  16. D.A. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman, A. Sonzogni, Y. Danon, A. Carlson, M. Dunn et al., Nuclear Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  17. W.P. Abfalterer, F.B. Bateman, F.S. Dietrich, R.W. Finlay, R.C. Haight, G.L. Morgan, Phys. Rev. C 63, 044608 (2001). https://doi.org/10.1103/PhysRevC.63.044608

    Article  ADS  Google Scholar 

  18. Z. Wu, Nuclear Physics Experiment Method (Atomic Energy Press, Beijing, China, 1997)

    Google Scholar 

  19. I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal, D. Casadei, O. Couet, V. Fine et al., Computer Physics Communications 180, 2499 (2009)

    Article  ADS  Google Scholar 

  20. Y. Chen, G. Luan, J. Bao, H. Jing, L. Zhang, Q. An, H. Bai, P. Cao, Q. Chen, P. Cheng et al., The European Physical Journal A 55, 1 (2019)

    Article  Google Scholar 

  21. H. Yi, T. Wang, Y. Li, X. Ruan, J. Ren, Y. Chen, Q. Li, J. Wen, J. Tang, Q. An et al., Journal of Instrumentation 15, P03026 (2020)

    Article  Google Scholar 

  22. Q. Li, H. Jing, B. Zhou, C. Ning, J. Tang, J. Ren, H. Yi, X. Zhu, L. Zhang, W. Jiang et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrometers, Detectors and Associated Equipment 980, 164506 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Plan (2016YFA0401603), the National Natural Science Foundation of China (11675155 and 11790321), and the Foundation of President of China Academy of Engineering Physics (YZJJLX2016003). The authors thank the CSNS Back-n Collaboration for their support. The comments and suggestions of reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Liu.

Additional information

Communicated by Robert Janssens.

The original online version of this article was revised: The name of the second author was corrected from Yiwei Zhang to Yiwei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, Y., Liu, R. et al. Measurement of the neutron total cross sections of aluminum at the back-n white neutron source of CSNS. Eur. Phys. J. A 57, 232 (2021). https://doi.org/10.1140/epja/s10050-021-00513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00513-9

Navigation