Skip to main content
Log in

Infrared Emission Spectroscopy for Investigation of Biological Molecules in Aqueous Solutions

  • AQUEOUS SOLUTIONS IN BIOLOGICAL SYSTEMS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Examples are given of using infrared emission spectroscopy to analyze the structure of biological molecules in aqueous solutions. Instead of sample heating commonly used in emission spectroscopy, it is proposed to use a cold background for screening environmental thermal emission. Emission spectra are measured for three types of molecular biological objects in aqueous solutions: protein (bovine serum albumin 1 mg/mL in H2O), phospholipid (1,2-dimiristoylphosphatidylcholine 1 mg/mL in D2O) in two phase states (gel at 10°С and liquid crystal at 35°С), and nucleotide (adenosine-5'-triphosphate 1 mg/mL in H2O). Characteristic bands are obtained for each of the samples. Higher sensitivity and wider application of infrared emission spectroscopy with a cold background in comparison to that with sample heating are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. L. Smith, Applied Infrared Spectroscopy: Fundamentals Techniques and Analytical Problem-Solving, Ed. by P. J. Elving (Wiley, New York, 1979).

    Google Scholar 

  2. F. Siebert and P. Hildebrandt, Vibrational Spectroscopy in Life Science (Wiley, Weinheim, 2008).

    Google Scholar 

  3. Handbook of Vibrational Spectroscopy (Wiley, 2006). https://doi.org/10.1002/0470027320

  4. E. Herbst, “Chemistry in the interstellar medium,” Annu. Rev. Phys. Chem. 46, 27–54 (1995). https://doi.org/10.1146/annurev.pc.46.100195.000331

    Article  ADS  Google Scholar 

  5. Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere. I. Principles and methods,” Appl. Spectrosc. Rev. 39 (3), 295–363 (2004). https://doi.org/10.1081/ASR-200030192

    Article  ADS  Google Scholar 

  6. Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere. Part 2. Applications,” Appl. Spectrosc. Rev. 40 (4), 327–390 (2005). https://doi.org/10.1080/05704920500230906

    Article  ADS  Google Scholar 

  7. J. Hvistendahl, E. Rytter, and H. A. Oye, “IR emission spectroscopy of molten salts and other liquids using thick samples as reference,” Appl. Spectrosc. 37 (2), 182–187 (1983). https://doi.org/10.1366/0003702834633920

    Article  ADS  Google Scholar 

  8. F. J. Deblase and S. Compton, “Infrared emission spectroscopy: A theoretical and experimental review,” Appl. Spectrosc. 45 (4), 611–618 (1991). https://doi.org/10.1366/0003702914337029

    Article  ADS  Google Scholar 

  9. P. F. Bernath, “Infrared emission spectroscopy,” Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 96, 177–224 (2000). https://doi.org/10.1039/b001200i

    Article  Google Scholar 

  10. E. L. Terpugov, O. V. Degtyareva, and V. V. Savransky, “Possibility of light-induced mid-Ir emission in situ analysis of plants,” J. Russ. Laser Res. 37 (5), 401–410 (2016). https://doi.org/10.1007/s10946-016-9602-8

    Article  Google Scholar 

  11. E. L. Terpugov and O. V. Degtyareva, “Infrared emission from photoexcited bacteriorhodopsin: Studies by FT-IR spectroscopy,” J. Mol. Struct. 565566, 287–292 (2001). https://doi.org/10.1016/S0022-2860(00)00901-7

  12. A. G. Gagarinov, O. V. Degtyareva, A. A. Khodonov, and E. L. Terpugov, “Stimulated infrared emission in all-trans retinal and wild-type bacteriorhodopsin under CW optical pumping: Studies by FTIR spectroscopy,” Vibr. Spectrosc. 42 (24), 231–238 (2006). https://doi.org/10.1016/j.vibspec.2006.05.002

    Article  Google Scholar 

  13. O. V. Degtyareva, V. N. Afanas’ev, N. N. Khecheshvili, and E. L. Terpugov, “Structure and properties of liquid L-lysine monohydrochloride and L-glycine under exposed to a low-intense optical radiation,” Sovr. Probl. Nauki Obraz., No. 4, 1–9 (2013) [in Russian]. http://www.science-education.ru/110-10010/

  14. N. Penkov and N. Penkova, “Measurement of the emission spectra of protein solutions in the infrared range. Description of the method and testing using solution of human interferon gamma as an example,” Front. Phys. 8, 615917 (2020). https://doi.org/10.3389/fphy.2020.615917

    Article  Google Scholar 

  15. N. Penkov and N. Penkova, “Analysis of emission infrared spectra of protein solutions in low concentrations,” Front. Phys. 8, 624779 (2020). https://doi.org/10.3389/fphy.2020.624779

    Article  Google Scholar 

  16. J.-J. Max and C. Chapados, “Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm–1,” J. Chem. Phys. 131, 184505 (2009). https://doi.org/10.1063/1.3258646

    Article  ADS  Google Scholar 

  17. A. Barth, “Infrared spectroscopy of proteins,” Biochim. Biophys. Acta, Bioenerg. 1767 (9), 1073–1101 (2007). https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  Google Scholar 

  18. S. Yu. Venyaminov and N. N. Kalnin, “Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil conformations,” Biopolymers. 30 (13-14), 1259–1271 (1990). https://doi.org/10.1002/bip.360301310

    Article  Google Scholar 

  19. https://www.uniprot.org/uniprot/P02769

  20. R. N. Lewis, A. H. McElhaney, W. Pohle, and H. H. Mantsch, “Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: A reevaluation,” Biophys. J. 67 (6), 2367–2375 (1994). https://doi.org/10.1016/S0006-3495(94)80723-4

    Article  ADS  Google Scholar 

  21. J. F. Nagle and D. A. Wilkinson, “Lecithin bilayers. Density measurement and molecular interactions,” Biophys. J. 23 (2), 159–175 (1978). https://doi.org/10.1016/S0006-3495(78)85441-1

    Article  Google Scholar 

  22. Biomolecular Structure and Dynamics, Eds. by G. Vergoten and Th. Theophanides (Springer, 1997). https://doi.org/10.1007/978-94-011-5484-0

  23. F. L. Khalil and T. L. Brown, “Infrared spectra of adenosine triphosphate complexes in deuterium oxide solution,” J. Am. Chem. Soc. 86 (23), 5113–5117 (1964). https://doi.org/10.1021/ja01077a014

    Article  Google Scholar 

  24. P. F. Bernath, “Infrared Fourier transform emission spectroscopy,” Chem. Soc. Rev. 25 (2), 111–115 (1996). https://doi.org/10.1039/CS9962500111

    Article  Google Scholar 

  25. N. Penkov, V. Yashin, E. Fesenko, Jr., A. Manokhin, and E. Fesenko, “A study of the effect of a protein on the structure of water in solution using terahertz time-domain spectroscopy,” Appl. Spectrosc. 72 (2), 257–267 (2018). https://doi.org/10.1177/0003702817735551

    Article  ADS  Google Scholar 

  26. N. V. Penkov, V. A. Yashin, and K. N. Belosludtsev, “Hydration shells of DPPC liposomes from the point of view of terahertz time-domain spectroscopy,” Appl. Spectrosc. 75 (2), 189–198 (2021). https://doi.org/10.1177/0003702820949285

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed on the equipment of the Optical Microscopy and Spectrophotometry Core Facility of the Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (http://www.ckp-rf.ru/ckp/670266/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Penkov.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penkov, N.V., Penkova, N.A. Infrared Emission Spectroscopy for Investigation of Biological Molecules in Aqueous Solutions. Phys. Wave Phen. 29, 164–168 (2021). https://doi.org/10.3103/S1541308X21020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020102

Keywords:

Navigation