Skip to main content
Log in

The Role of Shaking of a Liquid Sample in the Dynamics of Polymer Membrane Swelling: A Cell of Limited Volume

  • TRANSFORMATION OF THE AQUEOUS SOLUTION COMPOSITION UNDER EXTERNAL INFLUENCE
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The swelling of a Nafion polymer membrane in water poured into a cell with a characteristic size close to the membrane thickness has been studied experimentally using Fourier IR spectroscopy. The interest in these studies is due to the fact that the Nafion swelling in a cell whose size greatly exceeds the membrane thickness is accompanied by intense unwinding of polymer fibers into the water bulk. However, this process had not been studied in the case where the region that can be occupied by unwound polymer fibers is limited by the cell size. It is shown that the temporal dynamics of the polymer transition from hydrophobic to hydrophilic state has some peculiar features in this case, which are determined by the cell size, isotopic composition, and preliminary treatment (intense shaking) of the liquid in which a Nafion sample swells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. A. Mauritz and R. B. Moore, “State of understanding of Nafion,” Chem. Rev. 104 (10), 4535–4586 (2004). https://doi.org/10.1021/cr0207123

    Article  Google Scholar 

  2. L. Liu, W. Chen, and Y. Li, “An overview of the proton conductivity of Nafion membranes through a statistic analysis,” J. Membr. Sci. 504, 1–9 (2016). https://doi.org/10.1016/j.memsci.2015.12.065

    Article  Google Scholar 

  3. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy. 88 (4), 981–1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  Google Scholar 

  4. Yu. G. Frolov, Course of Colloid Chemistry. Surface Phenomena and Dispersed Systems (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  5. G. H. Pollack, The Fourth Phase of Water (Ebner, Seattle, WA, 2013).

    Google Scholar 

  6. B. W. Ninham, and P. Lo Nostro, Molecular Forces and Self Assembly in Colloid, Nano Sciences and Biology (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  7. N. F. Bunkin, G. A. Lyakhov, V. A. Kozlov, A. V. Shkirin, I. I. Molchanov, M. T. Vu, I. S. Bereza, N. G. Bolikov, V. L. Fouilhe, Igor S. Golyak, Ilya S. Golyak, I. L. Fufurin, V. S. Gorelik, E. V. Uspenskaya, H. S. Nguyen, and S. V. Gudkov, “Time dependence of the luminescence from a polymer membrane swollen in water: Concentration and isotopic effects,” Phys. Wave Phenom. 25 (4), 259–271 (2017). https://doi.org/10.3103/S1541308X17040045

    Article  ADS  Google Scholar 

  8. N. F. Bunkin, A. V. Shkirin, V. A. Kozlov, B. W. Ninham, E. V. Uspenskaya, and S. V. Gudkov, “Near-surface structure of Nafion in deuterated water,” J. Chem. Phys. 149 (16), 164901 (2018). https://doi.org/10.1063/1.5042065

    Article  ADS  Google Scholar 

  9. H. Craig, “Standard reporting concentrations of deuterium and oxygen-18 in natural water,” Science. 133 (3467), 1833–1834 (1961). https://doi.org/10.1126/science.133.3467.1833

    Article  ADS  Google Scholar 

  10. J. Workman, Jr. and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, 2nd ed. (CRC, Boca Raton, 2012).

    Book  Google Scholar 

  11. N. F. Bunkin, A. A. Balashov, A. V. Shkirin, V. S. Gorelik, A. E. Primenko, I. I. Molchanov, V. M. Tuan, N. G. Bolikov, I. S. Bereza, M. E. Astashev, S. V. Gudkov, and V. A. Kozlov, “Investigation of deuterium substitution effects in a polymer membrane using IR Fourier spectrometry,” Opt. Spectrosc. 125 (3), 337–342 (2018). https://doi.org/10.1134/S0030400X18090072

    Article  ADS  Google Scholar 

  12. N. F. Bunkin, V. A. Kozlov, A. V. Shkirin, B. W. Ninham, A. A. Balashov, and S. V. Gudkov, “Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique,” J. Chem. Phys. 148 (12), 124901 (2018). https://doi.org/10.1063/1.5022264

    Article  ADS  Google Scholar 

  13. E. M. Furst and T. M. Squires, Microrheology (Oxford Univ. Press, New York, 2017).

    Google Scholar 

  14. J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, Englewood Cliffs, N.J., 1988).

    Google Scholar 

  15. G. Gebel, “Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution,” Polymer. 41 (15), 5829–5838 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3

    Article  Google Scholar 

  16. Z. Fang, X. Wang, L. Zhou, L. Zhang, and J. Hu, “Formation and stability of bulk nanobubbles by vibration,” Langmuir. 36 (9), 2264–2270 (2020). https://doi.org/10.1021/acs.langmuir.0c00036

    Article  Google Scholar 

  17. N. F. Bunkin, A. V. Shkirin, B. W. Ninham, S. N. Chirikov, L. L. Chaikov, N. V. Penkov, V. A. Kozlov, and S. V. Gudkov, “Shaking-induced aggregation and flotation in immunoglobulin dispersions: Differences between water and water–ethanol mixtures,” ACS Omega. 5 (24), 14689–14701 (2020). https://doi.org/10.1021/acsomega.0c01444

    Article  Google Scholar 

Download references

Funding

This study was supported by a grant of the Ministry of Higher Education and Science of the Russian Federation on carrying out large-scale scientific projects in priority fields of science and technology (no. 075-15-2020-774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotskova, P.N., Bunkin, N.F., Kozlov, V.A. et al. The Role of Shaking of a Liquid Sample in the Dynamics of Polymer Membrane Swelling: A Cell of Limited Volume. Phys. Wave Phen. 29, 114–122 (2021). https://doi.org/10.3103/S1541308X21020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020047

Keywords:

Navigation