Skip to main content
Log in

Structures Consisting of Helices 30/11 and Their Possible Realization in Aqueous Systems

  • STRUCTURE MODELS AND EQUATIONS OF STATE FOR AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The main types of structures consisting of adjacent and/or intersecting helices 30/11 formed by tetrahedrally coordinated atoms have been investigated. These structures are fundamentally noncrystalline. Nevertheless, they can take form of regularly folded large helices, lattices, a planar layer, rod structures, and different-level approximations to fractal structures. It is shown that such bound-water structures correspond in metric parameters, symmetry, and topology to crystals of biological macromolecules, protein shells of viruses, and biological tissues. In addition, they can store energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Boerdijk–Coxeter helix is a rectilinear helix of E3, in which each four successive vertices form a regular tetrahedron.

REFERENCES

  1. N. A. Bul’enkov, “Possible role of hydration as the leading integration factor in the organization of biosystems at different levels of their hierarchy,” Biofizika. 36 (2), 181–243 (1991) [in Russian].

    Google Scholar 

  2. V. A. Engel’gardt, Cognition of the Phenomena Life (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  3. R. Mosseri, D. P. DiVincenzo, J. F. Sadoc, and M. H. Brodsky, “Polytope model and the electronic and structural properties of amorphous semiconductors,” Phys. Rev. B. 32, 3974–4000 (1985). https://doi.org/10.1103/PhysRevB.32.3974

    Article  ADS  MathSciNet  Google Scholar 

  4. N. A. Bul’enkov, “Periodic dispiration-modular diamond-like structures of “bound” water – possible constructions determining the conformation of biopolymers in the structures of their hydrates,” Sov. Phys.-Crystallogr. 33 (2), 250–261 (1988).

    Google Scholar 

  5. N. A. Bul’enkov, “Self-organization of triplet structures of ideal fractals of “bound” water with symmetries D3 and T,” Sov. Phys.-Crystallogr. 35 (1), 88–92 (1990).

    Google Scholar 

  6. N. A. Bul’enkov, “Parametric fractal-triplet structures of “bound” water in the form of closed surfaces and possibility of supramolecular self-assembly of virus capsules on them,” Sov. Phys.-Crystallogr. 35 (1), 92–95 (1990).

    Google Scholar 

  7. N. A. Bulienkov, “Three possible branches of determinate modular generalization of crystallography,” in Fields Institute Monographs, Vol. 10: Quasicrystals and Discrete Geometry, Ed. by J. Patera (Am. Math. Soc., Providence, Rhode Island, 1998), pp. 67–134.

  8. N. A. Bulienkov and E. A. Zheligovskaya, “Role of bound water and precipitants in the self-organization of biocrystals,” J. Struct. Chem. 55 (7), 1215–1224 (2014). https://doi.org/10.1134/S0022476614070051

    Article  Google Scholar 

  9. E. V. Blagova and I. P. Kuranova, “Crystallization and preparation of protein crystals for X-ray diffraction analysis,” Crystallogr. Rep. 44 (3), 513–531 (1999).

    ADS  Google Scholar 

  10. Ya. Levy and J. N. Onuchic, “Water mediation in protein folding and molecular recognition,” Annu. Rev. Biophys. Biomol. Struct. 35, 389–415 (2006). https://doi.org/10.1146/annurev.biophys.35.040405.102134

    Article  Google Scholar 

  11. C. D. Carter, X. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, “Three-dimensional structure of human serum albumin,” Science. 244, 1195–1198 (1989). https://doi.org/10.1126/science.2727704

    Article  ADS  Google Scholar 

  12. C. D. Carter and X. He, “Structure of human serum albumin,” Science. 249, 302–303 (1990). https://doi.org/10.1126/science.2374930

    Article  ADS  Google Scholar 

  13. X. M. Xe and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature. 364, 362 (1993). https://doi.org/10.1038/364362b0

    Article  ADS  Google Scholar 

  14. N. A. Bulienkov and E. A. Zheligovskaya, “Functional modular dynamic model of the surface layer of water,” Russ. J. Phys. Chem. 80 (10), 1584–1604 (2006). https://doi.org/10.1134/S0036024406100086

    Article  Google Scholar 

  15. A. Haji-Akbari and P. G. Debenedetti, “Perspective: Surface freezing in water: A nexus of experiments and simulations,” J. Chem. Phys. 147 (6), 060901 (2017). https://doi.org/10.1063/1.4985879

    Article  ADS  Google Scholar 

  16. V. M. Kaganer, H. Möhwald, and P. Dutta, “Structure and phase transitions in Langmuir monolayers,” Rev. Mod. Phys. 71 (3), 779–819 (1999). https://doi.org/10.1103/RevModPhys.71.779

    Article  ADS  Google Scholar 

  17. E. V. Ermakova, Candidate’s Dissertation in Chemistry (Frumkin Inst. Phys. Chem. Electrochem. RAS, Moscow, 2019).

  18. V. V. Arslanov, L. S. Sheinina, and M. A. Kalinina, “Supramolecular chemistry of highly ordered systems,” in Selected Aspects of Modern Physical Chemistry (Granitsa, Moscow, 2005), pp. 94–118 [in Russian].

    Google Scholar 

  19. N. A. Bulienkov and E. A. Zheligovskaya, “System-forming functions of bound water in the mechanism of topochemical reactions of formation of ultrathin layers on water surface,” Biophysics. 58 (1), 1–18 (2013). https://doi.org/10.1134/S0006350913010041

    Article  Google Scholar 

  20. N. A. Bulienkov, E. A. Zheligovskaya, V. V. Klechkovskaya, and G. I. Ivakin, “Role of the surface layer of water in the self-organization of metal sulfide textures under a Langmuir monolayer,” Crystallogr. Rep. 56 (3), 517–525 (2011). https://doi.org/10.1134/S1063774511020040

    Article  ADS  Google Scholar 

  21. V. I. Lobyshev, A. B. Solovei, and N. A. Bulienkov, “Computer modular design of parametric structures of water,” Biophysics. 48 (6), 932–941 (2003).

    Google Scholar 

  22. E. A. Zheligovskaya and N. A. Bulienkov, “Rod structures of bound water: A possible role in self-organization of biological systems and nondissipative energy transmission,” Biophysics. 62 (5), 683–690 (2017). https://doi.org/10.1134/S0006350917050256

    Article  Google Scholar 

  23. N. A. Bulienkov and E. A. Zheligovskaya, “Generalized crystallography and bound-water modular structures determining morphogenesis and size of biosystems,” Struct. Chem. 28 (1), 75–103 (2017). https://doi.org/10.1007/s11224-016-0837-3

    Article  Google Scholar 

  24. N. A. Bulienkov, “The role of modular design in study of the self-organization of biological systems,” Biophysics. 50 (5), 811–831 (2005).

    Google Scholar 

  25. N. A. Bulienkov, “Systemic structural modular generalization of the crystallography of bound water applied to study the mechanisms of processes in biosystems at the atomic and molecular level,” Crystallogr. Rep. 56 (4), 680–697 (2011). https://doi.org/10.1134/S1063774511040043

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zheligovskaya.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheligovskaya, E.A., Bulienkov, N.A. Structures Consisting of Helices 30/11 and Their Possible Realization in Aqueous Systems. Phys. Wave Phen. 29, 141–154 (2021). https://doi.org/10.3103/S1541308X21020163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020163

Keywords:

Navigation