Skip to main content
Log in

Positronium in Biosystems and Medicine: A New Approach to Tumor Diagnostics Based on Correlation between Oxygenation of Tissues and Lifetime of the Positronium Atom

  • AQUEOUS SOLUTIONS IN BIOLOGICAL SYSTEMS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Current trends in development of positron annihilation tomography (change-over to total body tomography, new image reconstruction methods based on Time-of-Flight techniques and 3γ annihilation events) are discussed. They open up unique possibilities of identifying both the annihilation point of Ps atoms and their lifetime in the tissues of the organism under study (Ps imaging). Our experimental data are presented that demonstrate a relationship between the Ps lifetime and the degree of oxygenation of tissues, which is actually a new additional method for tumor diagnostics using е+е annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. S. Levin, “Primer on molecular imaging technology,” Eur. J. Nucl. Med. Mol. Imaging. 32, S325–S345 (2005). https://doi.org/10.1007/s00259-005-1973-y

    Article  Google Scholar 

  2. S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nat. Rev. Cancer. 2, 683–693 (2002). https://doi.org/10.1038/nrc882

    Article  Google Scholar 

  3. P. Moskal and E. Ł. Stępień, “Prospects and clinical perspectives of total-body PET imaging using plastic scintillators,” PET Clin. 15 (4), 439–452 (2020). https://doi.org/10.1016/j.cpet.2020.06.009

    Article  Google Scholar 

  4. R. D. Badawi, H. Shi, P. Hu, S. Chen, T. Xu, P. M. Price, Y. Ding, B. A. Spencer, L. Nardo, W. Liu, J. Bao, T. Jones, H. Li, and S. R. Cherry, “First human imaging studies with the EXPLORER total-body PET scanner,” J. Nucl. Med. 60 (3), 299–303 (2019). https://doi.org/10.2967/jnumed.119.226498

    Article  Google Scholar 

  5. S. R. Cherry, R. D. Badawi, J. S. Karp, W. W. Moses, P. Price, and T. Jones, “Total-body imaging: Transforming the role of positron emission tomography,” Sci. Trans. Med. 9 (381), eaaf6169 (2017). https://doi.org/10.1126/scitranslmed.aaf6169

  6. S. R. Cherry, T. Jones, J. S. Karp, J. Qi, W. Moses, and R. D. Badawi, “Total-body pet: Maximizing sensitivity to create new opportunities for clinical research and patient care,” J. Nucl. Med. 59 (1), 3–12 (2017). https://doi.org/10.2967/jnumed.116.184028

    Article  Google Scholar 

  7. A. Gajos, D. Kamińska, E. Czerwiński, D. Alfs, T. Bednarski, P. Białas, B. Głowacz, M. Gorgol, B. Jasińska, Ł. Kapłon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemień, E. Kubicz, M. Mohammed, Sz. Niedźwiecki, M. Pałka, M. Pawlik-Niedźwiecka, L. Raczyński, Z. Rudy, O. Rundel, N.G. Sharma, M. Silarski, A. Słomski, A. Strzelecki, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, and P. Moskal, “Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector”, Nucl. Instrum. Methods Phys. Res., Sect. A. 819, 54–59 (2016). https://doi.org/10.1016/j.nima.2016.02.069

    Article  Google Scholar 

  8. K. Kacperski, N. M. Spyrou, and F. A. Smith, “Three-gamma annihilation imaging in positron emission tomography,” IEEE Trans. Med. Imaging. 23 (4), 525–529 (2004). https://doi.org/10.1109/TMI.2004.824150

    Article  Google Scholar 

  9. S. Niedźwiecki, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, M. Gorgol, B. C. Hiesmayr, B. Jasińska, L. Kapłon, D. Kisielewska-Kamińskaa, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, M. Palka, L. Raczyński, Z. Rudy, N. G. Sharma, S. Sharma, R. Y. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, W. Wiślicki, B. Zgardzińska, M. Zieliński, and P. Moskal, “J-PET: A new technology for the whole-body PET imaging,” Acta Phys. Pol., B. 48 (10), 1567–1576 (2017). https://doi.org/10.5506/APhysPolB.48.1567

    Article  ADS  Google Scholar 

  10. P. Moskal, B. Jasińska, E. Ł. Stępień, and S. D. Bass, “Positronium in medicine and biology,” Nat. Rev. Phys. 1, 527–529 (2019). https://doi.org/10.1038/s42254-019-0078-7

    Article  Google Scholar 

  11. A. Carreau, B. El Hafny-Rahbi, A. Matejuk, C. Grillon, and C. Kieda, “Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia,” J. Cell. Mol. Med. 15 (6), 1239–1253 (2011). https://doi.org/10.1111/j.1582-4934.2011.01258.x

    Article  Google Scholar 

  12. B. Jasińska, B. Zgardzińska, G. Chołubek, M. Gorgol, K. Wiktor, K. Wysoglad, P. Białas, C. Curceanu, E. Czerwiński, K. Dulski, A. Gajos, B. Głowacz, B. Hiesmayr, B. Jodłowska-Jędrych, D. Kamińska, G. Korcyl, P. Kowalski, T. Kozik, N. Krawczyk, W. Krzemień, E. Kubicz, M. Mohammed, M. Pawlik-Niedźwiecka, S. Niedźwiecki, M. Pałka, L. Raczyński, Z. Rudy, N.G. Sharma, S. Sharma, R. Shopa, M. Silarski, M. Skurzok, A. Wieczorek, H. Wiktor, W. Wiślicki, M. Zieliński, and P. Moskal, “Human tissues investigation using PALS technique,” Acta Phys. Pol., B. 48 (10), 1737–1747 (2017). https://doi.org/10.5506/APhysPolB.48.1737

    Article  ADS  Google Scholar 

  13. Z. Bura, K. Dulski, E. Kubicz, P. Małczak, M. Pędziwiatr, M. Szczepanek, E. Ł. Stępień, and P. Moskal, “Studies of the ortho-positronium lifetime for cancer diagnostics,” Acta Phys. Pol., B. 51 (1), 377–382 (2020). https://doi.org/10.5506/APhysPolB.51.377

    Article  ADS  Google Scholar 

  14. P. S. Stepanov, F. A. Selim, S. V. Stepanov, A. V. Bokov, O. V. Ilyukhina, G. Duplâtre, and V. M. Byakov, “Interaction of positronium with dissolved oxygen in liquids,” Phys. Chem. Chem. Phys. 22 (9), 5123–5131 (2020). https://doi.org/10.1039/C9CP06105C

    Article  Google Scholar 

  15. H. L. Clever, R. Battino, H. Miyamoto, Yu. Yampolski, and C. L. Young, “IUPAC-NIST solubility data series. Oxygen and ozone in water, aqueous solutions, and organic liquids (Supplement to Solubility Data Series Volume 7),” J. Phys. Chem. Ref. Data. 43 (3), 033102 (2014). https://doi.org/10.1063/1.4883876

    Article  ADS  Google Scholar 

  16. R. Battino, T. R. Rettich, and T. Tominaga, “The solubility of oxygen and ozone in liquids,” J. Phys. Chem. Ref. Data. 12 (2), 163–178 (1983). https://doi.org/10.1063/1.555680

    Article  ADS  Google Scholar 

  17. K. Shibuya, H. Saito, F. Nishikido, M. Takahashi, and T. Yamaya, “Oxygen sensing ability of positronium atom for tumor hypoxia imaging,” Commun. Phys. 3, 173 (2020). https://doi.org/10.1038/s42005-020-00440-z

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental work was done at facilities of the Research Equipment Sharing Center KAMIKS (http://kamiks.itep.ru/), ITEP, NRC “Kurchatov Institute”.

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 20-14-50150\20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stepanov.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.V., Byakov, V.M. & Stepanov, P.S. Positronium in Biosystems and Medicine: A New Approach to Tumor Diagnostics Based on Correlation between Oxygenation of Tissues and Lifetime of the Positronium Atom. Phys. Wave Phen. 29, 174–179 (2021). https://doi.org/10.3103/S1541308X21020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020138

Keywords:

Navigation