Skip to main content
Log in

Spectral Properties of Microwave Background Inhomogeneities on Planck Multi-Frequency Maps Near RCR Catalog Sources

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—The spectral properties of the inhomogeneities of the microwave background on Planck multi-frequency maps that are distant from the sources of the RCR catalog by the half-width of the power beam pattern of the high-frequency Planck complex (\( \pm 2'.5\)), as well as the spectral features of the sources depending on the presence of positive spots near them, are studied. About 830 objects of the catalog were examined for the detection of spots with positive amplitudes near them. The features that indicate the connection of positive peaks on the Planck maps with the nearest radio sources are revealed. First, it is the excess of the number of RCR sources with flat and normal spectra, near which there are spots, over the number of sources with steep spectra. Secondly, the number of spots with positive amplitude on Planck maps that coincide within \( \pm 2'.5\) with the coordinates of source-free areas on NVSS, FIRST maps and have the same sizes is on average almost one and a half times less than the number of spots that coincide with RCR objects. It is shown that RCR objects, near which there are no spots, have steeper spectra compared to the spectra of sources, near which spots are detected. The distribution of the spectral indices of spots in the range of 30–217 GHz was close to the distribution of the spectral indices of RCR sources in the range of 100 MHz–8.5 GHz, and their median values almost coincided. This may indicate that the positive fluctuations on the Planck maps detected near RCR objects in the range of 30–217 GHz are synchrotron in nature and may be associated with these objects. They can be manifestations of these objects or manifestations of their host galaxies and their environment in the submillimeter range. In the range of 353–857 GHz, some of the detected spots can be classified as dusty. The spectra of RCR sources, near which such spots were detected, were steeper than the spectra of RCR objects, near which spots were detected only in the frequency channels 30–217 GHz. The steeper the spectrum of the RCR object in the range of 100 MHz–8.5 GHz, the greater the value of the positive spectral index of the nearest spot in the range of 353–857 GHz. The spots, whose two-frequency spectral indices indicate their dusty nature, may be associated with the high dust content in the host galaxies of RCR objects and the processes of star formation in them. It is also possible that the rise in the spectra at high frequencies may be caused by the presence of a signal from cold galactic dust on the frequency maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. https://www.cosmos.esa.int/web/planck/publications.

  2. http://pla.esac.esa.int/pla/#home.

  3. http://www.astromatic.net/software/sextractorhttp://terapix.iap.fr/soft/sextractor.

  4. The background components, according to [16], include synchrotron radiation, free-free, thermal dust radiation, and emission of rotating dust particles.

  5. http://cats.sao.ru.

  6. http://www.glesp.nbi.dk.

  7. For RCR sources with uncertainly defined spectra, the median values were \({{\alpha }_{{3.94}}} = - 0.34\) and \({{\alpha }_{{1.4}}} = - 0.32\).

  8. Where there is no break in the spot spectrum, the spectral indices were calculated over the entire range of 30–857 GHz.

REFERENCES

  1. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182, 543 (2009).

    Article  Google Scholar 

  2. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, id. A8 (2011a).

  3. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, id. A20 (2011b).

  4. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 550, id. A133, (2013).

  5. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 566, id. A55 (2014a).

  6. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A1 (2014b).

  7. P. A. R. Ade et al., (Planck Collab.), Astron. and Astrophys. 571, id. A11 (2014c).

  8. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A14 (2014d).

  9. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A16 (2014e).

  10. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A20 (2014f).

  11. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A28 (2014g).

  12. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A29 (2014h).

  13. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 576, id. A104 (2015a).

  14. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 582, id. A28 (2015b).

  15. R. Adam et al. (Planck Collab.), Astron. and Astrophys. 594, id. A1 (2016a).

  16. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A10 (2016b).

  17. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A26 (2016c).

  18. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A27 (2016d).

  19. H. Aihara, C. Allende Prieto, D. An, et al., Astrophys. J. Suppl. 193, id. 29 (2011).

  20. C. L. Bennett, M. Halpern, G. Hinshaw, et al., Astrophys. J. Suppl. 148, 1 (2003).

    Article  ADS  Google Scholar 

  21. C. L. Bennett, D. Larson, J. L. Weiland, et al., Astrophys. J. Suppl. 208, 20 (2013).

    Article  Google Scholar 

  22. T. Boch and P. Fernique, ASP Conf. Ser. 485, 277, (2014).

  23. E. Bertin and S. Arnouts, Astron. and Astrophys. Suppl. 117, 393 (1996).

    ADS  Google Scholar 

  24. F. Bonnarel, P. Fernique, O. Bienaymé, et al., Astron. and Astrophys. Suppl. 143, 33 (2000).

    ADS  Google Scholar 

  25. A. S. Cohen, W. M. Lane, W. D. Cotton, et al., Astron. J. 134, 1245 (2007).

    Article  ADS  Google Scholar 

  26. G. De Zotti, M. Massardi, M. Negrello, and J. Wall, arXiv:0908.1896v2 (2009).

  27. K. M. Gorski, E. Hivon, A. J. Banday, et al., Astrophys. J. 622 (2), 759 (2005).

    Article  ADS  Google Scholar 

  28. B. R. Granett, M. C. Neyrinck, and I. Szapudi, Astrophys. J. 683, L99 (2008).

    Article  ADS  Google Scholar 

  29. P. C. Gregory, W. K. Scott, K. Douglas, and J. J. Condon, Astrophys. J. Suppl. 103, 427 (1996).

    Article  Google Scholar 

  30. J. S. Hey, S. J. Parsons, and J. W. Phillips, Proc. Roy. Soc. London., Ser. A, Math. Phys. Sciences 192 (1030), 425 (1948).

    Google Scholar 

  31. N. Hurley-Walker, J. R. Callingham, P. J. Hancock, et al., Monthly Notices Royal Astron. Soc. 464, 1146 (2017).

    Article  ADS  Google Scholar 

  32. H. T. Intema, P. Jagannathan, K. P. Mooley, and D. A. Frail, Astron. and Astrophys. 598, id. A78 (2017).

  33. W. M. Lane, W. D. Cotton, S. van Velzen, et al., Monthly Notices Royal Astron. Soc. 440, 327 (2014).

    Article  ADS  Google Scholar 

  34. N. M. Lipovka and A. A. Stotsky, Izvestiya Glavnoj Astronomicheskoj Observatorii v Pulkove 188, 243 (1972).

  35. E. K. Majorova, O. V. Verkhodanov, and O. P. Zhelenkova, Astrophysical Bulletin 75, 77 (2020).

    Article  ADS  Google Scholar 

  36. E. K. Majorova, O. P. Zhelenkova, and A. V. Temirova Astrophysical Bulletin 70, 33 (2015).

    Article  ADS  Google Scholar 

  37. M.Massardi,M. López-Caniego, J. González-Nuevo, et al., Monthly Notices Royal Astron. Soc. 392, 733 (2009).

    Article  ADS  Google Scholar 

  38. M. G. Mingaliev, Y. V. Sotnikova, I. Torniainen, et al., Astron. and Astrophys. 544, id. A25 (2012).

  39. M. G. Mingaliev, Y. V. Sotnikova, T. V. Mufakharov, et al., Astrophysical Bulletin 68, 262 (2013).

    Article  ADS  Google Scholar 

  40. F. Ochsenbein, P. Bauer, J. Marcout, Astron. and Astrophys. Suppl. 143, 23 (2000).

    ADS  Google Scholar 

  41. Yu. N. Parijskij and D. V. Korolkov Review of Science and Technique. Astrophysics and space physics, ed. by R. A. Syunyaev, No. 31, 73 (VINITI, Moscow, 1986).

  42. Yu. N. Parijskij, N. N. Bursov, N. M. Lipovka, et al., Astron. and Astrophys. Suppl. 87, 1 (1991).

    ADS  Google Scholar 

  43. Yu. N. Parijskij, N. N. Bursov, N. M. Lipovka, et al., Astron. and Astrophys. Suppl. 98, 391 (1993).

    ADS  Google Scholar 

  44. Yu. N. Parijskij, N. S. Soboleva, O. V. Verkhodanov, et al., Bull. Spec. Astrophys. Obs. 40, 125 (1996).

    ADS  Google Scholar 

  45. V. V. Pushkarev, E. K. Majorova, and O. V. Verkhodanov, Astrophysical Bulletin 74, 337 (2019).

    Article  ADS  Google Scholar 

  46. N. S. Soboleva, E. K. Majorova, O. P. Zhelenkova, et al., Astrophysical Bulletin 65, 42 (2010).

    Article  ADS  Google Scholar 

  47. Yu. V. Sotnikova, T. V. Mufaharov, E. K. Majorova, et al., Astrophysical Bulletin 74, 348 (2019).

    Article  ADS  Google Scholar 

  48. O. V. Verkhodanov, ASP Conf. Ser. 125, 46 (1997).

  49. O. V. Verkhodanov, A. G. Doroshkevich, P. D. Naselsky, et al., Bull. Spec. Astrophys. Obs. 58, 40 (2005).

    ADS  Google Scholar 

  50. O. V. Verkhodanov, B. L. Erukhimov, M. L. Monosov, et al., Bull. Spec. Astrophys. Obs. 36, 132 (1993).

    ADS  Google Scholar 

  51. O. V. Verkhodanov, E. K.Majorova, O. P. Zhelenkova, et al., Astrophysical Bulletin 70, 156 (2015a).

    Article  ADS  Google Scholar 

  52. O. V. Verkhodanov, E. K.Majorova, O. P. Zhelenkova, et al., Astronomy Letters 41 (9), 457 (2015b).

    Article  ADS  Google Scholar 

  53. O. V. Verkhodanov, E. K.Maiorova, O. P. Zhelenkova, et al., Astronomy Reports 60 (7), 630 (2016a).

    Article  ADS  Google Scholar 

  54. O. V. Verkhodanov, D. I. Solovyov, O. S. Ulakhovich, et al., Astrophysical Bulletin 71, 139 (2016b).

    Article  ADS  Google Scholar 

  55. O. V. Verkhodanov, S. A. Trushkin,H. Andernach, and V. N. Chernenkov, Bull. Spec. Astrophys.Obs. 58, 118 (2005).

    ADS  Google Scholar 

  56. E. L. Wright, X. Chen, N. Odegard, et al., Astrophys. J. Suppl. 180, 283 (2009).

    Article  Google Scholar 

  57. D. G. York, J. Adelman, J. E. Anderson, Jr., et al., Astron. J. 120, 1579 (2000).

    Article  ADS  Google Scholar 

  58. O. P. Zhelenkova and E. K. Majorova, Astrophysical Bulletin 73, 142 (2018).

    Article  ADS  Google Scholar 

  59. O. P. Zhelenkova, N. S. Soboleva, E. K.Majorova, and A. V. Temirova, Astrophysical Bulletin 68, 26 (2013).

    Article  ADS  Google Scholar 

  60. O. P. Zhelenkova, N. S. Soboleva, A. V. Temirova, and N. N. Bursov Astrophysical Bulletin 72, 150 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the European Space Agency ESA for open access to the results of observations and data processing in the Planck Legacy Archive. Radio astronomy catalogs from the CATS and Vizier databases were used to construct the radio spectra. We used the FADPS radio astronomy data processing system, the SExtractor software package, and the Aladin Java application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Majorova.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by T. Sokolova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majorova, E.K., Zhelenkova, O.P. Spectral Properties of Microwave Background Inhomogeneities on Planck Multi-Frequency Maps Near RCR Catalog Sources. Astrophys. Bull. 76, 109–122 (2021). https://doi.org/10.1134/S199034132102005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132102005X

Keywords:

Navigation