Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis

Abstract

Dynamin has an important role in clathrin-mediated endocytosis by cutting the neck of nascent vesicles from the cell membrane. Here, using gold nanorods as cargos to image dynamin action during live clathrin-mediated endocytosis, we show that, near the peak of dynamin accumulation, the cargo-containing vesicles always exhibit abrupt, right-handed rotations that finish in a short time (~0.28 s). The large and quick twist, herein named the super twist, is the result of the coordinated dynamin helix action upon GTP hydrolysis. After the super twist, the rotational freedom of the vesicle increases substantially, accompanied by simultaneous or delayed translational movement, indicating that it detaches from the cell membrane. These observations suggest that dynamin-mediated scission involves a large torque generated by the coordinated actions of multiple dynamins in the helix, which is the main driving force for vesicle scission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of 3D-SPORT.
Fig. 2: Multidimensional imaging of a AuNR and the surrounding molecular fluorescence.
Fig. 3: A typical example of an endocytic event with vesicle rotational information.
Fig. 4: Statistics of the major events before fission and scheme of the dynamin scission model.
Fig. 5: Endocytosis of AuNRs by A549 cells expressing K44A dynamin mutants with deficient GTPase activity.
Fig. 6: Rotation step sizes at different times during endocytosis.
Fig. 7: An example of an abortive scission event.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data supporting the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The auto-chasing was achieved using Micro-Manager. The localization and orientation of an AuNR was analysed with MATLAB. All code is available from the corresponding authors on request.

References

  1. Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koirala, S. et al. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl Acad. Sci. USA 110, E1342–E1351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamada, H. et al. Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem. Biophys. Res. Commun. 390, 1142–1148 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Mettlen, M., Chen, P.-H., Srinivasan, S., Danuser, G. & Schmid, S. L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87, 871–896 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cocucci, E., Gaudin, R. & Kirchhausen, T. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell. 25, 3595–3609 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Stowell, M. H. B., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat. Cell Biol. 1, 27–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Y.-W., Mattila, J.-P. & Schmid, S. L. Dynamin-catalyzed membrane fission requires coordinated GTP hydrolysis. PLoS ONE 8, e55691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shnyrova, A. V. et al. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 339, 1433–1436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mattila, J.-P. et al. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524, 109–113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmid, S. L. & Frolov, V. A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27, 79–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Chappie, J. S. et al. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147, 209–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srinivasan, S., Dharmarajan, V., Reed, D. K., Griffin, P. R. & Schmid, S. L. Identification and function of conformational dynamics in the multidomain GTPase dynamin. EMBO J. 35, 443–457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sundborger, A. C. et al. A dynamin mutant defines a superconstricted prefission state. Cell Rep. 8, 734–742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kozlovsky, Y. & Kozlov, M. M. Membrane fission: model for intermediate structures. Biophys. J. 85, 85–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morlot, S. et al. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151, 619–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colom, A., Redondo-Morata, L., Chiaruttini, N., Roux, A. & Scheuring, S. Dynamic remodeling of the dynamin helix during membrane constriction. Proc. Natl Acad. Sci. USA 114, 5449–5454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pannuzzo, M., McDargh, Z. A. & Deserno, M. The role of scaffold reshaping and disassembly in dynamin driven membrane fission. eLife 7, e39441 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol. 147, 259–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nat. Cell Biol. 3, 922–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kong, L. et al. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Cheng, X. et al. Resolving cargo-motor-track interactions with bifocal parallax single-particle tracking. Biophys. J. 120, 1378–1386 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Qian, Z. M., Li, H., Sun, H. & Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54, 561–587 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Gu, Y. et al. Rotational dynamics of cargos at pauses during axonal transport. Nat. Commun. 3, 1030 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Chen, K. et al. Characteristic rotational behaviors of rod-shaped cargo revealed by automated five-dimensional single particle tracking. Nat. Commun. 8, 887 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kaplan, L., Ierokomos, A., Chowdary, P., Bryant, Z. & Cui, B. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Sci. Adv. 4, e1602170 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cureton, D. K., Massol, R. H., Whelan, S. P. J. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Xiao, L., Ha, J. W., Wei, L., Wang, G. & Fang, N. Determining the full three-dimensional orientation of single anisotropic nanoparticles by differential interference contrast microscopy. Angew. Chem. Int. 51, 7734–7738 (2012).

    Article  CAS  Google Scholar 

  37. Grassart, A. et al. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol. 205, 721–735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu, Y., Sun, W., Wang, G. & Fang, N. Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. J. Am. Chem. Soc. 133, 5720–5723 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Gu, Y. et al. Revealing rotational modes of functionalized gold nanorods on live cell membranes. Small 9, 785–792 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Engqvist-Goldstein, Å. E. & Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Boulant, S., Kural, C., Zeeh, J.-C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y.-J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nat. Struct. Mol. Biol. 11, 574–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galli, V., Sebastian, R., Moutel, S., Ecard, J. & Roux, A. Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab. eLife 6, e25197 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jimah, J. R. & Hinshaw, J. E. Structural insights into the mechanism of dynamin superfamily proteins. Trends Cell Biol. 29, 257–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Meinecke, M. et al. Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J. Biol. Chem. 288, 6651–6661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neumann, S. & Schmid, S. L. Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase dynamin-2. J. Biol. Chem. 288, 25119–25128 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Haucke, V. & Kozlov, M. M. Membrane remodeling in clathrin-mediated endocytosis. J. Cell Sci. 131, 17 (2018).

    Article  CAS  Google Scholar 

  53. Boucrot, E. et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hohendahl, A. et al. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 6, e26856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yoshida, Y. et al. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J. 23, 3483–3491 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Drubin for providing the gene-edited SK-MEL-2 cell line, and S. Schmid for insightful comments and help during the completion of this manuscript. This work is supported by National Institution of Health (R01GM115763). X.C. acknowledges partial support from Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) (RD2020050501).

Author information

Authors and Affiliations

Authors

Contributions

X.C., K.C. and B.D. contributed equally to this work. G.W. and N.F. conceived the idea. X.C., K.C., B.D., G.W. and N.F. designed the research. X.C., K.C. and B.D. built the imaging setup. M.Y., S.L.F., Y.M., T.-X.H. and Y.G. contributed to the experiments. All of the authors performed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Gufeng Wang or Ning Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Cell Biology thanks Sandra Schmid, Aurélien Roux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Calibration curve of Δy vs. Δz and 3D localization precision of a AuNR.

a, The AuNRs were immobilized on a glass slide surface with various orientations and scanned along the z-axis from -1000 nm to 1000 nm with 10 nm steps using a high-precision objective scanner (Data were expressed as mean ± SD, n = 20 independent experiments). b, Typical upper and lower half-plane dark-field images of a AuNR with 0.02 s integration time are shown on the left. Scale bar is 5 μm. The lateral positions of the AuNR are determined by 2D elliptical Gaussian fitting (right) the intensity profile. c, Scatter plot of locations of the same AuNR in 500 frames. The x, y positions are determined using 2D elliptical Gaussian fitting of the particle image intensity profile. The z positions are obtained from feedback of the objective scanner when auto-focusing system was engaged. The localization precision is determined as the standard deviation from 1D Gaussian function fitting the histogram distribution of the AuNR locations in x, y, z, giving σx = 4.9 nm (d), σy = 6.3 nm (E) and σz = 14.0 nm (f).

Source data

Extended Data Fig. 2 Another example of the full plane defocused image patterns of a AuNR.

The defocused images of a AuNR with a polar angle of 60° at different azimuth angles with 10° intervals were shown. Scale bar is 1 μm.

Extended Data Fig. 3 The six basic dipole emission templates used in simulation.

These basic image patterns are dependent on system-specific parameters including the numerical aperture and magnification of the objective, and the defocusing distance.

Extended Data Fig. 4 Estimated polar and azimuth angle errors for orientation recovery at S/N = 10.

a, Estimated polar errors for orientation with various combinations of the azimuth angle and polar angle at S/N = 10. b, The cross section along the black line in (a) shows the polar angle errors with various polar angles and a fixed azimuth angle of 90°. c, The cross section along the red line in (a) represents the polar angle errors with various azimuth angles and a fixed polar angle of 60°. d, Estimated azimuth errors for orientation with various combinations of the azimuth angle and polar angle at S/N = 10. e, The cross section along the black line in (d) shows the azimuth angle errors with various polar angles and a fixed azimuth angle of 90°. f, The cross section along the red line in (d) represents the azimuth angle errors with various azimuth angles and a fixed polar angle of 60°.

Source data

Extended Data Fig. 5 Dynamin and clathrin fluorescence during endocytosis of the example shown in Fig. 3.

a, Clathrin channel. b, Dynamin channel. c, Focused scattering channel for AuNRs. d, Overlapped images. e, Time evolution of clathrin and dynamin fluorescence on the entry spot, clathrin and dynamin fluorescence on the vesicle, the xy-, and the z-displacement of the particle from the entry spot during an endocytosis event. The dashed line indicates the time of fission point. The experiments have been performed 5 times and with similar results obtained.

Source data

Extended Data Fig. 6 A complete 3D trajectory, rotation information, and dynamin fluorescence of an endocytosis event.

a, The overlay of the time evolution of the cargo’s xy-, z-displacements, rotational azimuth and polar angles, and dynamin fluorescence in the background, respectively. Labels B, C, D, E and F represent various stages during the endocytosis. b, Expanded time window near the fission point (orange frame) in (a). c, Cargo’s defocused image patterns showing the “super twist” at Stage D. The scale bar is 500 nm. The experiments have been performed 45 times, with similar results obtained.

Source data

Extended Data Fig. 7 More examples of complete endocytosis events.

a, Example 1, b, Example 2, c, Example 3 and d, Example 4. The overlay of the time evolution of the cargo’s xy-, z-displacements, rotational azimuth and polar angles, and dynamin fluorescence in the background, respectively. Labels A, B, C, D, E, and F represent various stages during endocytosis.

Source data

Extended Data Fig. 8 An example of rotational tracking of a AuNR in Stage a.

The overlay of the time evolution of the cargo rotational azimuth, and polar angles in stage a. The experiments have been performed 45 times and with similar results obtained.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion.

Reporting Summary

Peer Review Information

Supplementary Video 1

An example of multidimensional images of AuNR endocytosis. Clathrin fluorescence (red), dynamin fluorescence (green) and a scattering image of a AuNR (grey) are shown. The white arrow indicates the overlaid point of the clathrin channel, dynamin channel and AuNR scattering channel. Fluorescence images were acquired at 0.5 f.p.s. and played in real time. Scattering images were acquired at 50 f.p.s. and played at 50 f.p.s. Scale bar, 5 μm.

Supplementary Video 2

An example of active rotation in stage A. The video was acquired at 50 f.p.s. and played at 100 f.p.s. Scale bar, 3 μm.

Supplementary Video 3

Scattering images showing the static period and the super twists. Left, original defocused images. Right, reconstructed images using recovered azimuth and polar angles. The videos were collected at 50 f.p.s. and played at 10 f.p.s.

Supplementary Video 4

An additional example for scattering images showing the static period and the super twists. The description of the left and right parts and the video collection and play rate are the same as those in Supplementary Video 3.

Supplementary Video 5

An additional example for scattering images showing the static period and the super twists. The description of the left and right parts and the video collection and play rate are the same as those in Supplementary Video 3.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Chen, K., Dong, B. et al. Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nat Cell Biol 23, 859–869 (2021). https://doi.org/10.1038/s41556-021-00713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-021-00713-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing